Evy Goossens | Ghent University (original) (raw)

Papers by Evy Goossens

Research paper thumbnail of Diet diversity and environment determine the intestinal microbiome and bacterial pathogen load of fire salamanders

Scientific Reports

Diverse communities of symbiotic microbes inhabit the digestive systems of vertebrates and play a... more Diverse communities of symbiotic microbes inhabit the digestive systems of vertebrates and play a crucial role in animal health, and host diet plays a major role in shaping the composition and diversity of these communities. Here, we characterized diet and gut microbiome of fire salamander populations from three Belgian forests. We carried out DNA metabarcoding on fecal samples, targeting eukaryotic 18S rRNA of potential dietary prey items, and bacterial 16S rRNA of the concomitant gut microbiome. Our results demonstrated an abundance of soft-bodied prey in the diet of fire salamanders, and a significant difference in the diet composition between males and females. This sex-dependent effect on diet was also reflected in the gut microbiome diversity, which is higher in males than female animals. Proximity to human activities was associated with increased intestinal pathogen loads. Collectively, the data supports a relationship between diet, environment and intestinal microbiome in fi...

Research paper thumbnail of Research Note: The administration schedule of coccidia is a major determinant in broiler necrotic enteritis models

Research paper thumbnail of A Rapid and Simple Assay Correlates In Vitro NetB Activity with Clostridium perfringens Pathogenicity in Chickens

Microorganisms

Necrotic enteritis is an important enteric disease in poultry, caused by NetB-producing Clostridi... more Necrotic enteritis is an important enteric disease in poultry, caused by NetB-producing Clostridium (C.) perfringens strains. As no straight-forward method to assess the NetB activity of C. perfringens was available, we aimed to develop an easy, high-throughput method to measure the NetB activity produced by C. perfringens. First, the appearance of C. perfringens on different avian blood agar plates was assessed. Based on the size of the haemolysis surrounding the C. perfringens colonies, NetB-positive strains could phenotypically be discriminated from NetB-negative strains on both chicken and duck blood agar. Additionally, strains producing the consensus NetB protein induced more pronounced haemolysis on chicken blood agar as compared to the weak outer haemolysis induced by A168T NetB-variant-producing C. perfringens strains. Next, a 96-well plate-based haemolysis assay to screen NetB activity in the C. perfringens culture supernatants was developed. Using this assay, a positive co...

Research paper thumbnail of Zinc inhibits lethal inflammatory shock by preventing microbe‐induced interferon signature in intestinal epithelium

Research paper thumbnail of Dietary muramidase degrades bacterial peptidoglycan to NOD-activating muramyl dipeptides and reduces duodenal inflammation in broiler chickens

British Journal of Nutrition

Research paper thumbnail of A comparative study on the use of selective media for the enumeration of Clostridium perfringens in poultry faeces

Research paper thumbnail of C. perfringens challenge reduces matrix metalloproteinase activity in the jejunal mucosa of Eimeria-infected broiler chickens

Veterinary Research

Matrix metalloproteinases (MMPs) play an important role in intestinal extracellular matrix homeos... more Matrix metalloproteinases (MMPs) play an important role in intestinal extracellular matrix homeostasis. An overexpression of MMPs results in tissue destruction and local inflammation and has been associated with multiple inflammatory diseases. These host proteases might also be important in tissue damage caused by infectious agents, such as in intestinal damage in Clostridium perfringens-induced avian necrotic enteritis (NE). The aim of the present study was to elucidate the effect of a C. perfringens infection on the MMP activity in the small intestine of birds with a pre-disposing coccidial infection to obtain a more thorough understanding of the pathogenesis of NE. For this purpose, the gelatinolytic activity present in jejunal tissue of Eimeria infected birds which were challenged with either a pathogenic C. perfringens type G strain or a commensal C. perfringens type A strain was analyzed using substrate zymography. The results show that infection of broilers with Eimeria and d...

Research paper thumbnail of Incidence and associated risk factors of necrotic enteritis in Belgian layer pullet flocks

Research paper thumbnail of Dietary zinc source impacts intestinal morphology and oxidative stress in young broilers

Research paper thumbnail of In-feed resin acids reduce matrix metalloproteinase activity in the ileal mucosa of healthy broilers without inducing major effects on the gut microbiota

Veterinary Research

The chicken gut is constantly exposed to harmful molecules and microorganisms which endanger the ... more The chicken gut is constantly exposed to harmful molecules and microorganisms which endanger the integrity of the intestinal wall. Strengthening intestinal mucosal integrity is a key target for feed additives that aim to promote intestinal health in broilers. Recently, dietary inclusion of resin-based products has been shown to increase broiler performance. However, the mode of action is still largely unexplored. Coniferous resin acids are known for their antimicrobial, anti-inflammatory and wound-healing properties, all properties that might support broiler intestinal health. In the current study, the effect of pure resin acids on broiler intestinal health was explored. Ross 308 broilers were fed a diet supplemented with coniferous resin acids for 22 days, after which the effect on both the intestinal microbiota as well as on the intestinal tissue morphology and activity of host collagenases was assessed. Dietary inclusion of resin acids did not alter the morphology of the healthy intestine and only minor effects on the intestinal microbiota were observed. However, resin acids-supplementation reduced both duodenal inflammatory T cell infiltration and small intestinal matrix metalloproteinase (MMP) activity towards collagen type I and type IV. Reduced breakdown of collagen type I and IV might indicate a protective effect of resin acids on intestinal barrier integrity by preservation of the basal membrane and the extracellular matrix. Further studies are needed to explore the protective effects of resin acids on broiler intestinal health under sub-optimal conditions and to elaborate our knowledge on the mechanisms behind the observed effects.

Research paper thumbnail of Elevated faecal ovotransferrin concentrations are indicative for intestinal barrier failure in broiler chickens

Veterinary Research

Intestinal health is critically important for the welfare and performance of poultry. Enteric dis... more Intestinal health is critically important for the welfare and performance of poultry. Enteric diseases that cause gut barrier failure result in high economic losses. Up till now there is no reliable faecal marker to measure gut barrier failure under field conditions. Therefore, the aim of the present study was to identify a faecal protein marker for diminished intestinal barrier function due to enteric diseases in broilers. To assess this, experimental necrotic enteritis and coccidiosis in broilers were used as models for gut barrier failure. Ovotransferrin was identified as a marker for gut barrier failure using a proteomics approach on samples from chickens with necrotic enteritis. These results were confirmed via ELISA on samples derived from both necrotic enteritis and coccidiosis trials, where faecal ovotransferrin levels were significantly correlated with the severity of gut barrier failure caused by either coccidiosis or necrotic enteritis. This indicates that faecal ovotransferrin quantification may represent a valuable tool to measure gut barrier failure caused by enteric pathogens.

Research paper thumbnail of Biomarkers for monitoring intestinal health in poultry: present status and future perspectives

Veterinary Research

Intestinal health is determined by host (immunity, mucosal barrier), nutritional, microbial and e... more Intestinal health is determined by host (immunity, mucosal barrier), nutritional, microbial and environmental factors. Deficiencies in intestinal health are associated with shifts in the composition of the intestinal microbiome (dysbiosis), leakage of the mucosal barrier and/or inflammation. Since the ban on growth promoting antimicrobials in animal feed, these dysbiosis-related problems have become a major issue, especially in intensive animal farming. The economical and animal welfare consequences are considerable. Consequently, there is a need for continuous monitoring of the intestinal health status, particularly in intensively reared animals, where the intestinal function is often pushed to the limit. In the current review, the recent advances in the field of intestinal health biomarkers, both in human and veterinary medicine are discussed, trying to identify present and future markers of intestinal health in poultry. The most promising new biomarkers will be stable molecules ending up in the feces and litter that can be quantified, preferably using rapid and simple pen-side tests. It is unlikely, however, that a single biomarker will be sufficient to follow up all aspects of intestinal health. Combinations of multiple biomarkers and/or metabarcoding, metagenomic, metatranscriptomic, metaproteomic and metabolomic approaches will be the way to go in the future. Candidate biomarkers currently are being investigated by many research groups, but the validation will be a major challenge, due to the complexity of intestinal health in the field.

Research paper thumbnail of Vaccines as alternatives to antibiotics for food producing animals. Part 2: new approaches and potential solutions

Veterinary research, Jul 31, 2018

Vaccines and other alternative products are central to the future success of animal agriculture b... more Vaccines and other alternative products are central to the future success of animal agriculture because they can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, the second part in a two-part series, highlights new approaches and potential solutions for the development of vaccines as alternatives to antibiotics in food producing animals; o...

Research paper thumbnail of Bacillus Subtilis 29784 as a Feed Additive for Broilers Shifts the Intestinal Microbial Composition and Supports the Production of Hypoxanthine and Nicotinic Acid

Animals

The probiotic Bacillus subtilis strain 29784 (Bs29784) has been shown to improve performance in b... more The probiotic Bacillus subtilis strain 29784 (Bs29784) has been shown to improve performance in broilers. In this study, we used a metabolomic and 16S rRNA gene sequencing approach to evaluate effects of Bs29874 in the broiler intestine. Nicotinic acid and hypoxanthine were key metabolites that were produced by the strain in vitro and were also found in vivo to be increased in small intestinal content of broilers fed Bs29784 as dietary additive. Both metabolites have well-described anti-inflammatory effects in the intestine. Furthermore, Bs29784 supplementation to the feed significantly altered the ileal microbiome of 13-day-old broilers, thereby increasing the abundance of genus Bacillus, while decreasing genera and OTUs belonging to the Lactobacillaceae and Enterobacteriacae families. Moreover, Bs29784 did not change the cecal microbial community structure, but specifically enriched members of the family Clostridiales VadinBB60, as well as the butyrate-producing families Ruminococ...

Research paper thumbnail of Rethinking the role of alpha toxin in Clostridium perfringens-associated enteric diseases: a review on bovine necro-haemorrhagic enteritis

Bovine necro-haemorrhagic enteritis is an economically important disease caused by Clostridium pe... more Bovine necro-haemorrhagic enteritis is an economically important disease caused by Clostridium perfringens type A strains. The disease mainly affects calves under intensive rearing conditions and is characterized by sudden death associated with small intestinal haemorrhage, necrosis and mucosal neutrophil infiltration. The common assumption that, when causing intestinal disease, C. perfringens relies upon specific, plasmid-encoded toxins, was recently challenged by the finding that alpha toxin, which is produced by all C. perfringens strains, is essential for necro-haemor-rhagic enteritis. In addition to alpha toxin, other C. perfringens toxins and/or enzymes might contribute to the patho-genesis of necro-haemorrhagic enteritis. These additional virulence factors might contribute to breakdown of the protective mucus layer during initial stage of pathogenesis, after which alpha toxin, either or not in synergy with other toxins such as perfringolysin O, can act on the mucosal tissue. Furthermore, alpha toxin alone does not cause intestinal necrosis, indicating that other virulence factors might be needed to cause the extensive tissue necrosis observed in necro-haemorrhagic enteritis. This review summarizes recent research that has increased our understanding of the pathogenesis of bovine necro-haemorrhagic enteritis and provides information that is indispensable for the development of novel control strategies, including vaccines.

Research paper thumbnail of Toxin-neutralizing antibodies protect against Clostridium perfringens-induced necrosis in an intestinal loop model for bovine necrohemorrhagic enteritis

BMC Veterinary Research, 2016

Bovine necrohemorrhagic enteritis is caused by Clostridium perfringens type A. Due to the rapid p... more Bovine necrohemorrhagic enteritis is caused by Clostridium perfringens type A. Due to the rapid progress and fatal outcome of the disease, vaccination would be of high value. In this study, C. perfringens toxins, either as native toxins or after formaldehyde inactivation, were evaluated as possible vaccine antigens. We determined whether antisera raised in calves against these toxins were able to protect against C. perfringens challenge in an intestinal loop model for bovine necrohemorrhagic enteritis. Alpha toxin and perfringolysin O were identified as the most immunogenic proteins in the vaccine preparations. All vaccines evoked a high antibody response against the causative toxins, alpha toxin and perfringolysin O, as detected by ELISA. All antibodies were able to inhibit the activity of alpha toxin and perfringolysin O in vitro. However, the antibodies raised against the native toxins were more inhibitory to the C. perfringens-induced cytotoxicity (as tested on bovine endothelial cells) and only these antibodies protected against C. perfringens challenge in the intestinal loop model. Although immunization of calves with both native and formaldehyde inactivated toxins resulted in high antibody titers against alpha toxin and perfringolysin O, only antibodies raised against native toxins protect against C. perfringens challenge in an intestinal loop model for bovine necrohemorrhagic enteritis.

Research paper thumbnail of The C-terminal domain of Clostridium perfringens alpha toxin as a vaccine candidate against bovine necrohemorrhagic enteritis

Veterinary Research, 2016

Bovine necrohemorrhagic enteritis is caused by Clostridium perfringens and leads to sudden death.... more Bovine necrohemorrhagic enteritis is caused by Clostridium perfringens and leads to sudden death. Alpha toxin, together with perfringolysin O, has been identified as the principal toxin involved in the pathogenesis. We assessed the potential of alpha toxin as a vaccine antigen. Using an intestinal loop model in calves, we investigated the protection afforded by antisera raised against native alpha toxin or its non-toxic C-terminal fragment against C. perfringens-induced intestinal necrosis. Immunization of calves with either of the vaccine preparations induced a strong antibody response. The resulting antisera were able to neutralize the alpha toxin activity and the C. perfringens-induced endothelial cytotoxicity in vitro. The antisera raised against the native toxin had a stronger neutralizing activity than those against the C-terminal fragment. However, antibodies against alpha toxin alone were not sufficient to completely neutralize the C. perfringens-induced necrosis in the intestinal loop model. The development of a multivalent vaccine combining the C-terminal fragment of alpha toxin with other C. perfringens virulence factors might be necessary for complete protection against bovine necrohemorrhagic enteritis.

Research paper thumbnail of Haemorrhagic enteritis in newborn calves associated with Clostridium perfringens and colostrum delivery

Research paper thumbnail of Veal Calves Produce Less Antibodies against C. Perfringens Alpha Toxin Compared to Beef Calves

Toxins, 2015

Enterotoxaemia is a disease with a high associated mortality rate, affecting beef and veal calves... more Enterotoxaemia is a disease with a high associated mortality rate, affecting beef and veal calves worldwide, caused by C. perfringens alpha toxin and perfringolysin. A longitudinal study was conducted to determine the dynamics of antibodies against these toxins in 528 calves on 4 beef and 15 veal farms. The second study aimed to determine the effect of solid feed intake on the production of antibodies against alpha toxin and perfringolysin. The control group only received milk replacer, whereas in the test group solid feed was provided. Maternal antibodies for alpha toxin were present in 45% of the veal calves and 66% of the beef calves. In beef calves a fluent transition from maternal to active immunity was observed for alpha toxin, whereas almost no veal calves developed active immunity. Perfringolysin antibodies significantly declined both in veal and beef calves. In the second study all calves were seropositive for alpha toxin throughout the experiment and solid feed intake did not alter the dynamics of alpha and perfringolysin antibodies. In conclusion, the present study showed that veal calves on a traditional milk replacer diet had significantly lower alpha toxin antibodies compared to beef calves in the risk period for enterotoxaemia, whereas no differences were noticed for perfringolysin.

Research paper thumbnail of Perfringolysin O: The Underrated Clostridium perfringens Toxin?

Toxins, 2015

The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease de... more The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin), a pore-forming cholesterol-dependent cytolysin (CDC). PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250-300 Å in diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine

Research paper thumbnail of Diet diversity and environment determine the intestinal microbiome and bacterial pathogen load of fire salamanders

Scientific Reports

Diverse communities of symbiotic microbes inhabit the digestive systems of vertebrates and play a... more Diverse communities of symbiotic microbes inhabit the digestive systems of vertebrates and play a crucial role in animal health, and host diet plays a major role in shaping the composition and diversity of these communities. Here, we characterized diet and gut microbiome of fire salamander populations from three Belgian forests. We carried out DNA metabarcoding on fecal samples, targeting eukaryotic 18S rRNA of potential dietary prey items, and bacterial 16S rRNA of the concomitant gut microbiome. Our results demonstrated an abundance of soft-bodied prey in the diet of fire salamanders, and a significant difference in the diet composition between males and females. This sex-dependent effect on diet was also reflected in the gut microbiome diversity, which is higher in males than female animals. Proximity to human activities was associated with increased intestinal pathogen loads. Collectively, the data supports a relationship between diet, environment and intestinal microbiome in fi...

Research paper thumbnail of Research Note: The administration schedule of coccidia is a major determinant in broiler necrotic enteritis models

Research paper thumbnail of A Rapid and Simple Assay Correlates In Vitro NetB Activity with Clostridium perfringens Pathogenicity in Chickens

Microorganisms

Necrotic enteritis is an important enteric disease in poultry, caused by NetB-producing Clostridi... more Necrotic enteritis is an important enteric disease in poultry, caused by NetB-producing Clostridium (C.) perfringens strains. As no straight-forward method to assess the NetB activity of C. perfringens was available, we aimed to develop an easy, high-throughput method to measure the NetB activity produced by C. perfringens. First, the appearance of C. perfringens on different avian blood agar plates was assessed. Based on the size of the haemolysis surrounding the C. perfringens colonies, NetB-positive strains could phenotypically be discriminated from NetB-negative strains on both chicken and duck blood agar. Additionally, strains producing the consensus NetB protein induced more pronounced haemolysis on chicken blood agar as compared to the weak outer haemolysis induced by A168T NetB-variant-producing C. perfringens strains. Next, a 96-well plate-based haemolysis assay to screen NetB activity in the C. perfringens culture supernatants was developed. Using this assay, a positive co...

Research paper thumbnail of Zinc inhibits lethal inflammatory shock by preventing microbe‐induced interferon signature in intestinal epithelium

Research paper thumbnail of Dietary muramidase degrades bacterial peptidoglycan to NOD-activating muramyl dipeptides and reduces duodenal inflammation in broiler chickens

British Journal of Nutrition

Research paper thumbnail of A comparative study on the use of selective media for the enumeration of Clostridium perfringens in poultry faeces

Research paper thumbnail of C. perfringens challenge reduces matrix metalloproteinase activity in the jejunal mucosa of Eimeria-infected broiler chickens

Veterinary Research

Matrix metalloproteinases (MMPs) play an important role in intestinal extracellular matrix homeos... more Matrix metalloproteinases (MMPs) play an important role in intestinal extracellular matrix homeostasis. An overexpression of MMPs results in tissue destruction and local inflammation and has been associated with multiple inflammatory diseases. These host proteases might also be important in tissue damage caused by infectious agents, such as in intestinal damage in Clostridium perfringens-induced avian necrotic enteritis (NE). The aim of the present study was to elucidate the effect of a C. perfringens infection on the MMP activity in the small intestine of birds with a pre-disposing coccidial infection to obtain a more thorough understanding of the pathogenesis of NE. For this purpose, the gelatinolytic activity present in jejunal tissue of Eimeria infected birds which were challenged with either a pathogenic C. perfringens type G strain or a commensal C. perfringens type A strain was analyzed using substrate zymography. The results show that infection of broilers with Eimeria and d...

Research paper thumbnail of Incidence and associated risk factors of necrotic enteritis in Belgian layer pullet flocks

Research paper thumbnail of Dietary zinc source impacts intestinal morphology and oxidative stress in young broilers

Research paper thumbnail of In-feed resin acids reduce matrix metalloproteinase activity in the ileal mucosa of healthy broilers without inducing major effects on the gut microbiota

Veterinary Research

The chicken gut is constantly exposed to harmful molecules and microorganisms which endanger the ... more The chicken gut is constantly exposed to harmful molecules and microorganisms which endanger the integrity of the intestinal wall. Strengthening intestinal mucosal integrity is a key target for feed additives that aim to promote intestinal health in broilers. Recently, dietary inclusion of resin-based products has been shown to increase broiler performance. However, the mode of action is still largely unexplored. Coniferous resin acids are known for their antimicrobial, anti-inflammatory and wound-healing properties, all properties that might support broiler intestinal health. In the current study, the effect of pure resin acids on broiler intestinal health was explored. Ross 308 broilers were fed a diet supplemented with coniferous resin acids for 22 days, after which the effect on both the intestinal microbiota as well as on the intestinal tissue morphology and activity of host collagenases was assessed. Dietary inclusion of resin acids did not alter the morphology of the healthy intestine and only minor effects on the intestinal microbiota were observed. However, resin acids-supplementation reduced both duodenal inflammatory T cell infiltration and small intestinal matrix metalloproteinase (MMP) activity towards collagen type I and type IV. Reduced breakdown of collagen type I and IV might indicate a protective effect of resin acids on intestinal barrier integrity by preservation of the basal membrane and the extracellular matrix. Further studies are needed to explore the protective effects of resin acids on broiler intestinal health under sub-optimal conditions and to elaborate our knowledge on the mechanisms behind the observed effects.

Research paper thumbnail of Elevated faecal ovotransferrin concentrations are indicative for intestinal barrier failure in broiler chickens

Veterinary Research

Intestinal health is critically important for the welfare and performance of poultry. Enteric dis... more Intestinal health is critically important for the welfare and performance of poultry. Enteric diseases that cause gut barrier failure result in high economic losses. Up till now there is no reliable faecal marker to measure gut barrier failure under field conditions. Therefore, the aim of the present study was to identify a faecal protein marker for diminished intestinal barrier function due to enteric diseases in broilers. To assess this, experimental necrotic enteritis and coccidiosis in broilers were used as models for gut barrier failure. Ovotransferrin was identified as a marker for gut barrier failure using a proteomics approach on samples from chickens with necrotic enteritis. These results were confirmed via ELISA on samples derived from both necrotic enteritis and coccidiosis trials, where faecal ovotransferrin levels were significantly correlated with the severity of gut barrier failure caused by either coccidiosis or necrotic enteritis. This indicates that faecal ovotransferrin quantification may represent a valuable tool to measure gut barrier failure caused by enteric pathogens.

Research paper thumbnail of Biomarkers for monitoring intestinal health in poultry: present status and future perspectives

Veterinary Research

Intestinal health is determined by host (immunity, mucosal barrier), nutritional, microbial and e... more Intestinal health is determined by host (immunity, mucosal barrier), nutritional, microbial and environmental factors. Deficiencies in intestinal health are associated with shifts in the composition of the intestinal microbiome (dysbiosis), leakage of the mucosal barrier and/or inflammation. Since the ban on growth promoting antimicrobials in animal feed, these dysbiosis-related problems have become a major issue, especially in intensive animal farming. The economical and animal welfare consequences are considerable. Consequently, there is a need for continuous monitoring of the intestinal health status, particularly in intensively reared animals, where the intestinal function is often pushed to the limit. In the current review, the recent advances in the field of intestinal health biomarkers, both in human and veterinary medicine are discussed, trying to identify present and future markers of intestinal health in poultry. The most promising new biomarkers will be stable molecules ending up in the feces and litter that can be quantified, preferably using rapid and simple pen-side tests. It is unlikely, however, that a single biomarker will be sufficient to follow up all aspects of intestinal health. Combinations of multiple biomarkers and/or metabarcoding, metagenomic, metatranscriptomic, metaproteomic and metabolomic approaches will be the way to go in the future. Candidate biomarkers currently are being investigated by many research groups, but the validation will be a major challenge, due to the complexity of intestinal health in the field.

Research paper thumbnail of Vaccines as alternatives to antibiotics for food producing animals. Part 2: new approaches and potential solutions

Veterinary research, Jul 31, 2018

Vaccines and other alternative products are central to the future success of animal agriculture b... more Vaccines and other alternative products are central to the future success of animal agriculture because they can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, the second part in a two-part series, highlights new approaches and potential solutions for the development of vaccines as alternatives to antibiotics in food producing animals; o...

Research paper thumbnail of Bacillus Subtilis 29784 as a Feed Additive for Broilers Shifts the Intestinal Microbial Composition and Supports the Production of Hypoxanthine and Nicotinic Acid

Animals

The probiotic Bacillus subtilis strain 29784 (Bs29784) has been shown to improve performance in b... more The probiotic Bacillus subtilis strain 29784 (Bs29784) has been shown to improve performance in broilers. In this study, we used a metabolomic and 16S rRNA gene sequencing approach to evaluate effects of Bs29874 in the broiler intestine. Nicotinic acid and hypoxanthine were key metabolites that were produced by the strain in vitro and were also found in vivo to be increased in small intestinal content of broilers fed Bs29784 as dietary additive. Both metabolites have well-described anti-inflammatory effects in the intestine. Furthermore, Bs29784 supplementation to the feed significantly altered the ileal microbiome of 13-day-old broilers, thereby increasing the abundance of genus Bacillus, while decreasing genera and OTUs belonging to the Lactobacillaceae and Enterobacteriacae families. Moreover, Bs29784 did not change the cecal microbial community structure, but specifically enriched members of the family Clostridiales VadinBB60, as well as the butyrate-producing families Ruminococ...

Research paper thumbnail of Rethinking the role of alpha toxin in Clostridium perfringens-associated enteric diseases: a review on bovine necro-haemorrhagic enteritis

Bovine necro-haemorrhagic enteritis is an economically important disease caused by Clostridium pe... more Bovine necro-haemorrhagic enteritis is an economically important disease caused by Clostridium perfringens type A strains. The disease mainly affects calves under intensive rearing conditions and is characterized by sudden death associated with small intestinal haemorrhage, necrosis and mucosal neutrophil infiltration. The common assumption that, when causing intestinal disease, C. perfringens relies upon specific, plasmid-encoded toxins, was recently challenged by the finding that alpha toxin, which is produced by all C. perfringens strains, is essential for necro-haemor-rhagic enteritis. In addition to alpha toxin, other C. perfringens toxins and/or enzymes might contribute to the patho-genesis of necro-haemorrhagic enteritis. These additional virulence factors might contribute to breakdown of the protective mucus layer during initial stage of pathogenesis, after which alpha toxin, either or not in synergy with other toxins such as perfringolysin O, can act on the mucosal tissue. Furthermore, alpha toxin alone does not cause intestinal necrosis, indicating that other virulence factors might be needed to cause the extensive tissue necrosis observed in necro-haemorrhagic enteritis. This review summarizes recent research that has increased our understanding of the pathogenesis of bovine necro-haemorrhagic enteritis and provides information that is indispensable for the development of novel control strategies, including vaccines.

Research paper thumbnail of Toxin-neutralizing antibodies protect against Clostridium perfringens-induced necrosis in an intestinal loop model for bovine necrohemorrhagic enteritis

BMC Veterinary Research, 2016

Bovine necrohemorrhagic enteritis is caused by Clostridium perfringens type A. Due to the rapid p... more Bovine necrohemorrhagic enteritis is caused by Clostridium perfringens type A. Due to the rapid progress and fatal outcome of the disease, vaccination would be of high value. In this study, C. perfringens toxins, either as native toxins or after formaldehyde inactivation, were evaluated as possible vaccine antigens. We determined whether antisera raised in calves against these toxins were able to protect against C. perfringens challenge in an intestinal loop model for bovine necrohemorrhagic enteritis. Alpha toxin and perfringolysin O were identified as the most immunogenic proteins in the vaccine preparations. All vaccines evoked a high antibody response against the causative toxins, alpha toxin and perfringolysin O, as detected by ELISA. All antibodies were able to inhibit the activity of alpha toxin and perfringolysin O in vitro. However, the antibodies raised against the native toxins were more inhibitory to the C. perfringens-induced cytotoxicity (as tested on bovine endothelial cells) and only these antibodies protected against C. perfringens challenge in the intestinal loop model. Although immunization of calves with both native and formaldehyde inactivated toxins resulted in high antibody titers against alpha toxin and perfringolysin O, only antibodies raised against native toxins protect against C. perfringens challenge in an intestinal loop model for bovine necrohemorrhagic enteritis.

Research paper thumbnail of The C-terminal domain of Clostridium perfringens alpha toxin as a vaccine candidate against bovine necrohemorrhagic enteritis

Veterinary Research, 2016

Bovine necrohemorrhagic enteritis is caused by Clostridium perfringens and leads to sudden death.... more Bovine necrohemorrhagic enteritis is caused by Clostridium perfringens and leads to sudden death. Alpha toxin, together with perfringolysin O, has been identified as the principal toxin involved in the pathogenesis. We assessed the potential of alpha toxin as a vaccine antigen. Using an intestinal loop model in calves, we investigated the protection afforded by antisera raised against native alpha toxin or its non-toxic C-terminal fragment against C. perfringens-induced intestinal necrosis. Immunization of calves with either of the vaccine preparations induced a strong antibody response. The resulting antisera were able to neutralize the alpha toxin activity and the C. perfringens-induced endothelial cytotoxicity in vitro. The antisera raised against the native toxin had a stronger neutralizing activity than those against the C-terminal fragment. However, antibodies against alpha toxin alone were not sufficient to completely neutralize the C. perfringens-induced necrosis in the intestinal loop model. The development of a multivalent vaccine combining the C-terminal fragment of alpha toxin with other C. perfringens virulence factors might be necessary for complete protection against bovine necrohemorrhagic enteritis.

Research paper thumbnail of Haemorrhagic enteritis in newborn calves associated with Clostridium perfringens and colostrum delivery

Research paper thumbnail of Veal Calves Produce Less Antibodies against C. Perfringens Alpha Toxin Compared to Beef Calves

Toxins, 2015

Enterotoxaemia is a disease with a high associated mortality rate, affecting beef and veal calves... more Enterotoxaemia is a disease with a high associated mortality rate, affecting beef and veal calves worldwide, caused by C. perfringens alpha toxin and perfringolysin. A longitudinal study was conducted to determine the dynamics of antibodies against these toxins in 528 calves on 4 beef and 15 veal farms. The second study aimed to determine the effect of solid feed intake on the production of antibodies against alpha toxin and perfringolysin. The control group only received milk replacer, whereas in the test group solid feed was provided. Maternal antibodies for alpha toxin were present in 45% of the veal calves and 66% of the beef calves. In beef calves a fluent transition from maternal to active immunity was observed for alpha toxin, whereas almost no veal calves developed active immunity. Perfringolysin antibodies significantly declined both in veal and beef calves. In the second study all calves were seropositive for alpha toxin throughout the experiment and solid feed intake did not alter the dynamics of alpha and perfringolysin antibodies. In conclusion, the present study showed that veal calves on a traditional milk replacer diet had significantly lower alpha toxin antibodies compared to beef calves in the risk period for enterotoxaemia, whereas no differences were noticed for perfringolysin.

Research paper thumbnail of Perfringolysin O: The Underrated Clostridium perfringens Toxin?

Toxins, 2015

The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease de... more The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin), a pore-forming cholesterol-dependent cytolysin (CDC). PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250-300 Å in diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine