Elisabeth Peeters | Ghent University (original) (raw)
Papers by Elisabeth Peeters
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e.V, 2014
A continuous crystal coating method was developed to improve both flowability and tabletability o... more A continuous crystal coating method was developed to improve both flowability and tabletability of powders. The method includes the introduction of solid, dry particles into an atomized spray during spray drying in order to coat and agglomerate individual particles. Paracetamol was used as a model drug as it exhibits poor flowability and high capping tendency upon compaction. The particle size enlargement and flowability were evaluated by the mean median particle size and flow index of the resulting powders. The crystal coating coprocessing method was successful for the production of powders containing 75% paracetamol with excellent tableting properties. However, the extent of agglomeration achieved during coprocessing was limited. Tablets compressed on a rotary tablet press in manual mode showed excellent compression properties without capping tendency. A formulation with 75% paracetamol, 5% PVP and 20% amorphous lactose yielded a tensile strength of 1.9 MPa at a compression pressu...
European Journal of Pharmaceutics and Biopharmaceutics, 2015
Since small scale is key for successful introduction of continuous techniques in the pharmaceutic... more Since small scale is key for successful introduction of continuous techniques in the pharmaceutical industry to allow its use during formulation development and process optimization, it is essential to determine whether the product quality is similar when small quantities of materials are processed compared to the continuous processing of larger quantities. Therefore, the aim of this study was to investigate whether material processed in a single cell of the six-segmented fluid bed dryer of the ConsiGma™-25 system (a continuous twin screw granulation and drying system introduced by GEA Pharma Systems, Collette™, Wommelgem, Belgium) is predictive of granule and tablet quality during full-scale manufacturing when all drying cells are filled. Furthermore, the performance of the ConsiGma™-1 system (a mobile laboratory unit) was evaluated and compared to the ConsiGma™-25 system. A premix of two active ingredients, powdered cellulose, maize starch, pregelatinized starch and sodium starch glycolate was granulated with distilled water. After drying and milling (1000μm, 800rpm), granules were blended with magnesium stearate and compressed using a Modul™ P tablet press (tablet weight: 430mg, main compression force: 12kN). Single cell experiments using the ConsiGma™-25 system and ConsiGma™-1 system were performed in triplicate. Additionally, a 1h continuous run using the ConsiGma™-25 system was executed. Process outcomes (torque, barrel wall temperature, product temperature during drying) and granule (residual moisture content, particle size distribution, bulk and tapped density, hausner ratio, friability) as well as tablet (hardness, friability, disintegration time and dissolution) quality attributes were evaluated. By performing a 1h continuous run, it was detected that a stabilization period was needed for torque and barrel wall temperature due to initial layering of the screws and the screw chamber walls with material. Consequently, slightly deviating granule and tablet quality attributes were obtained during the start-up phase of the 1h run. For the single cell runs, granule and tablet properties were comparable with results obtained during the second part of the 1h run (after start-up). Although deviating granule quality (particle size distribution and Hausner ratio) was observed due to the divergent design of the ConsiGma™-1 unit and the ConsiGma™-25 system (horizontal set-up) used in this study, tablet quality produced from granules processed with the ConsiGma™-1 system was predictive for tablet quality obtained during continuous production using the ConsiGma™-25 system.
European Journal of Pharmaceutics and Biopharmaceutics, 2014
Continuous manufacturing gains more and more interest within the pharmaceutical industry. The Int... more Continuous manufacturing gains more and more interest within the pharmaceutical industry. The International Conference of Harmonisation (ICH) states in its Q8 'Pharmaceutical Development' guideline that the manufacturer of pharmaceuticals should have an enhanced knowledge of the product performance over a range of raw material attributes, manufacturing process options and process parameters. This fits further into the Process Analytical Technology (PAT) and Quality by Design (QbD) framework. The present study evaluates the effect of variation in critical raw material properties on the critical quality attributes of granules and tablets, produced by a continuous from-powder-to-tablet wet granulation line. The granulation process parameters were kept constant to examine the differences in the end product quality caused by the variability of the raw materials properties only. Theophylline-Lactose-PVP (30-67.5-2.5%) was used as model formulation. Seven different grades of theophylline were granulated. Afterward, the obtained granules were tableted. Both the characteristics of granules and tablets were determined. The results show that differences in raw material properties both affect their processability and several critical quality attributes of the resulting granules and tablets.
European Journal of Pharmaceutics and Biopharmaceutics, 2014
Classically, the end point detection during fluid bed drying has been performed using indirect pa... more Classically, the end point detection during fluid bed drying has been performed using indirect parameters, such as the product temperature or the humidity of the outlet drying air. This paper aims at comparing those classic methods to both in-line moisture and solid-state determination by means of Process Analytical Technology (PAT) tools (Raman and NIR spectroscopy) and a mass balance approach. The six-segmented fluid bed drying system being part of a fully continuous from-powder-to-tablet production line (ConsiGma™-25) was used for this study. A theophylline:lactose:PVP (30:67.5:2.5) blend was chosen as model formulation. For the development of the NIR-based moisture determination model, 15 calibration experiments in the fluid bed dryer were performed. Six test experiments were conducted afterwards, and the product was monitored in-line with NIR and Raman spectroscopy during drying. The results (drying endpoint and residual moisture) obtained via the NIR-based moisture determination model, the classical approach by means of indirect parameters and the mass balance model were then compared. Our conclusion is that the PAT-based method is most suited for use in a production set-up. Secondly, the different size fractions of the dried granules obtained during different experiments (fines, yield and oversized granules) were compared separately, revealing differences in both solid state of theophylline and moisture content between the different granule size fractions.
European Journal of Pharmaceutics and Biopharmaceutics, 2012
The aim of the current study was to screen theophylline (125 mg) tablets manufactured via twin sc... more The aim of the current study was to screen theophylline (125 mg) tablets manufactured via twin screw granulation in order to improve process understanding and knowledge of process variables that determine granule and tablet quality. A premix of theophylline anhydrate, α-lactose monohydrate and PVP (ratio: 30/67.5/2.5,w/w) was granulated with demineralized water. Experiments were done using the high-shear wet granulation module (based on twin screw granulation) of the ConsiGma™-25 unit (a continuous tablet manufacturing system) for particle size enlargement. After drying, granules were compressed using a MODUL™ P tablet press (compression force: 10 kN, tablet diameter: 12 mm). Using a D-optimal experimental design, the effect of several process variables (throughput (10-25 kg/h), screw speed (600-950 rpm), screw configuration (number (2, 4, 6 and 12) and angle (30°, 60° and 90°) of kneading elements), barrel temperature (25-40°C) and method of binder addition (dry versus wet)) on the granulation process (torque and temperature increase in barrel wall), granule (particle size distribution, friability and flowability) and tablet (tensile strength, porosity, friability, disintegration time and dissolution) quality was evaluated. The results showed that the quality of granules and tablets can be optimized by adjusting specific process variables (number of kneading elements, barrel temperature and binder addition method) during a granulation process using a continuous twin screw granulator.
European Journal of Pharmaceutics and Biopharmaceutics, 2008
It was evaluated if coprocessing via spray drying can be used as a formulation platform to improv... more It was evaluated if coprocessing via spray drying can be used as a formulation platform to improve the compactability of formulations containing drug substance (acetaminophen, ibuprofen, cimetidine) and excipients (carbohydrates, disintegrant, glidant, surfactant). Experimental design was applied to optimise the drug concentration and solid content of the feed suspension. In addition, scaling-up of acetaminophen-and ibuprofen-containing formulations was performed on a production-scale spray dryer. Optimised acetaminophen (drug concentration: 70% w/w), ibuprofen (drug concentration: 75% w/w) and cimetidine (drug concentration: 70% w/w) powders were obtained via co-spray drying of aqueous suspensions with a high solid content of the feed (35% w/w) and the resulting powders were directly compressed. Scaling-up of optimised acetaminophen and ibuprofen formulations was performed successfully, resulting in a robust and reproducible manufacturing process. It can be concluded that a combination of mannitol, erythritol, Glucidex Ò 9, Kollidon Ò CL, colloidal silicon dioxide and polyoxyethylene 20 sorbitan monooleate allowed the spray drying of highly dosed drug substances (acetaminophen, ibuprofen, cimetidine) in order to obtain 'ready-to-compress' powder mixtures on lab-scale and production-scale equipment.
Drug Development and Industrial Pharmacy, 2014
Abstract Context: Tableting is a complex process due to the large number of process parameters th... more Abstract Context: Tableting is a complex process due to the large number of process parameters that can be varied. Knowledge and understanding of the influence of these parameters on the final product quality is of great importance for the industry, allowing economic efficiency and parametric release. Objective: The aim of this study was to investigate the influence of paddle speeds and fill depth at different tableting speeds on the weight and weight variability of tablets. Materials and methods: Two excipients possessing different flow behavior, microcrystalline cellulose (MCC) and dibasic calcium phosphate dihydrate (DCP), were selected as model powders. Tablets were manufactured via a high-speed rotary tablet press using design of experiments (DoE). During each experiment also the volume of powder in the forced feeder was measured. Results and discussion: Analysis of the DoE revealed that paddle speeds are of minor importance for tablet weight but significantly affect volume of powder inside the feeder in case of powders with excellent flowability (DCP). The opposite effect of paddle speed was observed for fairly flowing powders (MCC). Tableting speed played a role in weight and weight variability, whereas changing fill depth exclusively influenced tablet weight. Conclusion: The DoE approach allowed predicting the optimum combination of process parameters leading to minimum tablet weight variability. Monte Carlo simulations allowed assessing the probability to exceed the acceptable response limits if factor settings were varied around their optimum. This multi-dimensional combination and interaction of input variables leading to response criteria with acceptable probability reflected the design space.
European Journal of Pharmaceutics and Biopharmaceutics, 2012
Manufacturers of pharmaceutical solid dosage forms aim for a reduced production time and a shorte... more Manufacturers of pharmaceutical solid dosage forms aim for a reduced production time and a shorter "time-to-market." Therefore, continuous manufacturing gains increasing interest in the pharmaceutical industry. For continuous manufacturing, the quality of produced pharmaceuticals should be assessed in real-time (in-line, on-line, and at-line) and not via the traditional off-line, often destructive and time-consuming analysis methods that supply the desired information only hours after sampling. This research paper evaluates three Process Analytical Technology (PAT) tools for the real-time at-line analysis of granules, which were produced using a continuous wet twin-screw granulator being part of a from powder-to-tablet production line (ConsiGma™-25). A Raman and NIR spectrometer were used together with a photometric imaging technique in order to acquire solid-state information and granule size data. These multivariate data were then used to predict the granules' moisture content, tapped and bulk density, and flowability. The three PAT tools provided complementary information for predicting these quality attributes of the continuously produced granules. The residual moisture content was mostly correlated with the spectroscopic data, whereas the imaging data had the highest predictive capability for the flowability of the granules.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e.V, 2014
A continuous crystal coating method was developed to improve both flowability and tabletability o... more A continuous crystal coating method was developed to improve both flowability and tabletability of powders. The method includes the introduction of solid, dry particles into an atomized spray during spray drying in order to coat and agglomerate individual particles. Paracetamol was used as a model drug as it exhibits poor flowability and high capping tendency upon compaction. The particle size enlargement and flowability were evaluated by the mean median particle size and flow index of the resulting powders. The crystal coating coprocessing method was successful for the production of powders containing 75% paracetamol with excellent tableting properties. However, the extent of agglomeration achieved during coprocessing was limited. Tablets compressed on a rotary tablet press in manual mode showed excellent compression properties without capping tendency. A formulation with 75% paracetamol, 5% PVP and 20% amorphous lactose yielded a tensile strength of 1.9 MPa at a compression pressu...
European Journal of Pharmaceutics and Biopharmaceutics, 2015
Since small scale is key for successful introduction of continuous techniques in the pharmaceutic... more Since small scale is key for successful introduction of continuous techniques in the pharmaceutical industry to allow its use during formulation development and process optimization, it is essential to determine whether the product quality is similar when small quantities of materials are processed compared to the continuous processing of larger quantities. Therefore, the aim of this study was to investigate whether material processed in a single cell of the six-segmented fluid bed dryer of the ConsiGma™-25 system (a continuous twin screw granulation and drying system introduced by GEA Pharma Systems, Collette™, Wommelgem, Belgium) is predictive of granule and tablet quality during full-scale manufacturing when all drying cells are filled. Furthermore, the performance of the ConsiGma™-1 system (a mobile laboratory unit) was evaluated and compared to the ConsiGma™-25 system. A premix of two active ingredients, powdered cellulose, maize starch, pregelatinized starch and sodium starch glycolate was granulated with distilled water. After drying and milling (1000μm, 800rpm), granules were blended with magnesium stearate and compressed using a Modul™ P tablet press (tablet weight: 430mg, main compression force: 12kN). Single cell experiments using the ConsiGma™-25 system and ConsiGma™-1 system were performed in triplicate. Additionally, a 1h continuous run using the ConsiGma™-25 system was executed. Process outcomes (torque, barrel wall temperature, product temperature during drying) and granule (residual moisture content, particle size distribution, bulk and tapped density, hausner ratio, friability) as well as tablet (hardness, friability, disintegration time and dissolution) quality attributes were evaluated. By performing a 1h continuous run, it was detected that a stabilization period was needed for torque and barrel wall temperature due to initial layering of the screws and the screw chamber walls with material. Consequently, slightly deviating granule and tablet quality attributes were obtained during the start-up phase of the 1h run. For the single cell runs, granule and tablet properties were comparable with results obtained during the second part of the 1h run (after start-up). Although deviating granule quality (particle size distribution and Hausner ratio) was observed due to the divergent design of the ConsiGma™-1 unit and the ConsiGma™-25 system (horizontal set-up) used in this study, tablet quality produced from granules processed with the ConsiGma™-1 system was predictive for tablet quality obtained during continuous production using the ConsiGma™-25 system.
European Journal of Pharmaceutics and Biopharmaceutics, 2014
Continuous manufacturing gains more and more interest within the pharmaceutical industry. The Int... more Continuous manufacturing gains more and more interest within the pharmaceutical industry. The International Conference of Harmonisation (ICH) states in its Q8 'Pharmaceutical Development' guideline that the manufacturer of pharmaceuticals should have an enhanced knowledge of the product performance over a range of raw material attributes, manufacturing process options and process parameters. This fits further into the Process Analytical Technology (PAT) and Quality by Design (QbD) framework. The present study evaluates the effect of variation in critical raw material properties on the critical quality attributes of granules and tablets, produced by a continuous from-powder-to-tablet wet granulation line. The granulation process parameters were kept constant to examine the differences in the end product quality caused by the variability of the raw materials properties only. Theophylline-Lactose-PVP (30-67.5-2.5%) was used as model formulation. Seven different grades of theophylline were granulated. Afterward, the obtained granules were tableted. Both the characteristics of granules and tablets were determined. The results show that differences in raw material properties both affect their processability and several critical quality attributes of the resulting granules and tablets.
European Journal of Pharmaceutics and Biopharmaceutics, 2014
Classically, the end point detection during fluid bed drying has been performed using indirect pa... more Classically, the end point detection during fluid bed drying has been performed using indirect parameters, such as the product temperature or the humidity of the outlet drying air. This paper aims at comparing those classic methods to both in-line moisture and solid-state determination by means of Process Analytical Technology (PAT) tools (Raman and NIR spectroscopy) and a mass balance approach. The six-segmented fluid bed drying system being part of a fully continuous from-powder-to-tablet production line (ConsiGma™-25) was used for this study. A theophylline:lactose:PVP (30:67.5:2.5) blend was chosen as model formulation. For the development of the NIR-based moisture determination model, 15 calibration experiments in the fluid bed dryer were performed. Six test experiments were conducted afterwards, and the product was monitored in-line with NIR and Raman spectroscopy during drying. The results (drying endpoint and residual moisture) obtained via the NIR-based moisture determination model, the classical approach by means of indirect parameters and the mass balance model were then compared. Our conclusion is that the PAT-based method is most suited for use in a production set-up. Secondly, the different size fractions of the dried granules obtained during different experiments (fines, yield and oversized granules) were compared separately, revealing differences in both solid state of theophylline and moisture content between the different granule size fractions.
European Journal of Pharmaceutics and Biopharmaceutics, 2012
The aim of the current study was to screen theophylline (125 mg) tablets manufactured via twin sc... more The aim of the current study was to screen theophylline (125 mg) tablets manufactured via twin screw granulation in order to improve process understanding and knowledge of process variables that determine granule and tablet quality. A premix of theophylline anhydrate, α-lactose monohydrate and PVP (ratio: 30/67.5/2.5,w/w) was granulated with demineralized water. Experiments were done using the high-shear wet granulation module (based on twin screw granulation) of the ConsiGma™-25 unit (a continuous tablet manufacturing system) for particle size enlargement. After drying, granules were compressed using a MODUL™ P tablet press (compression force: 10 kN, tablet diameter: 12 mm). Using a D-optimal experimental design, the effect of several process variables (throughput (10-25 kg/h), screw speed (600-950 rpm), screw configuration (number (2, 4, 6 and 12) and angle (30°, 60° and 90°) of kneading elements), barrel temperature (25-40°C) and method of binder addition (dry versus wet)) on the granulation process (torque and temperature increase in barrel wall), granule (particle size distribution, friability and flowability) and tablet (tensile strength, porosity, friability, disintegration time and dissolution) quality was evaluated. The results showed that the quality of granules and tablets can be optimized by adjusting specific process variables (number of kneading elements, barrel temperature and binder addition method) during a granulation process using a continuous twin screw granulator.
European Journal of Pharmaceutics and Biopharmaceutics, 2008
It was evaluated if coprocessing via spray drying can be used as a formulation platform to improv... more It was evaluated if coprocessing via spray drying can be used as a formulation platform to improve the compactability of formulations containing drug substance (acetaminophen, ibuprofen, cimetidine) and excipients (carbohydrates, disintegrant, glidant, surfactant). Experimental design was applied to optimise the drug concentration and solid content of the feed suspension. In addition, scaling-up of acetaminophen-and ibuprofen-containing formulations was performed on a production-scale spray dryer. Optimised acetaminophen (drug concentration: 70% w/w), ibuprofen (drug concentration: 75% w/w) and cimetidine (drug concentration: 70% w/w) powders were obtained via co-spray drying of aqueous suspensions with a high solid content of the feed (35% w/w) and the resulting powders were directly compressed. Scaling-up of optimised acetaminophen and ibuprofen formulations was performed successfully, resulting in a robust and reproducible manufacturing process. It can be concluded that a combination of mannitol, erythritol, Glucidex Ò 9, Kollidon Ò CL, colloidal silicon dioxide and polyoxyethylene 20 sorbitan monooleate allowed the spray drying of highly dosed drug substances (acetaminophen, ibuprofen, cimetidine) in order to obtain 'ready-to-compress' powder mixtures on lab-scale and production-scale equipment.
Drug Development and Industrial Pharmacy, 2014
Abstract Context: Tableting is a complex process due to the large number of process parameters th... more Abstract Context: Tableting is a complex process due to the large number of process parameters that can be varied. Knowledge and understanding of the influence of these parameters on the final product quality is of great importance for the industry, allowing economic efficiency and parametric release. Objective: The aim of this study was to investigate the influence of paddle speeds and fill depth at different tableting speeds on the weight and weight variability of tablets. Materials and methods: Two excipients possessing different flow behavior, microcrystalline cellulose (MCC) and dibasic calcium phosphate dihydrate (DCP), were selected as model powders. Tablets were manufactured via a high-speed rotary tablet press using design of experiments (DoE). During each experiment also the volume of powder in the forced feeder was measured. Results and discussion: Analysis of the DoE revealed that paddle speeds are of minor importance for tablet weight but significantly affect volume of powder inside the feeder in case of powders with excellent flowability (DCP). The opposite effect of paddle speed was observed for fairly flowing powders (MCC). Tableting speed played a role in weight and weight variability, whereas changing fill depth exclusively influenced tablet weight. Conclusion: The DoE approach allowed predicting the optimum combination of process parameters leading to minimum tablet weight variability. Monte Carlo simulations allowed assessing the probability to exceed the acceptable response limits if factor settings were varied around their optimum. This multi-dimensional combination and interaction of input variables leading to response criteria with acceptable probability reflected the design space.
European Journal of Pharmaceutics and Biopharmaceutics, 2012
Manufacturers of pharmaceutical solid dosage forms aim for a reduced production time and a shorte... more Manufacturers of pharmaceutical solid dosage forms aim for a reduced production time and a shorter "time-to-market." Therefore, continuous manufacturing gains increasing interest in the pharmaceutical industry. For continuous manufacturing, the quality of produced pharmaceuticals should be assessed in real-time (in-line, on-line, and at-line) and not via the traditional off-line, often destructive and time-consuming analysis methods that supply the desired information only hours after sampling. This research paper evaluates three Process Analytical Technology (PAT) tools for the real-time at-line analysis of granules, which were produced using a continuous wet twin-screw granulator being part of a from powder-to-tablet production line (ConsiGma™-25). A Raman and NIR spectrometer were used together with a photometric imaging technique in order to acquire solid-state information and granule size data. These multivariate data were then used to predict the granules' moisture content, tapped and bulk density, and flowability. The three PAT tools provided complementary information for predicting these quality attributes of the continuously produced granules. The residual moisture content was mostly correlated with the spectroscopic data, whereas the imaging data had the highest predictive capability for the flowability of the granules.