Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model (original) (raw)

NASA/ADS

Abstract

The problems of an Ising model in a magnetic field and a lattice gas are proved mathematically equivalent. From this equivalence an example of a two-dimensional lattice gas is given for which the phase transition regions in the p-v diagram is exactly calculated. A theorem is proved which states that under a class of general conditions the roots of the grand partition function always lie on a circle. Consequences of this theorem and its relation with practical approximation methods are discussed. All the known exact results about the two-dimensional square Ising lattice are summarized, and some new results are quoted.

Publication:

Physical Review

Pub Date:

August 1952

DOI:

10.1103/PhysRev.87.410

Bibcode:

1952PhRv...87..410L