Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition (original) (raw)
NASA/ADS
;
Abstract
Confocal microscopy was used to directly observe three-dimensional dynamics of particles in colloidal supercooled fluids and colloidal glasses. The fastest particles moved cooperatively; connected clusters of these mobile particles could be identified; and the cluster size distribution, structure, and dynamics were investigated. The characteristic cluster size grew markedly in the supercooled fluid as the glass transition was approached, in agreement with computer simulations; at the glass transition, however, there was a sudden drop in their size. The clusters of fast-moving particles were largest near the α-relaxation time scale for supercooled colloidal fluids, but were also present, albeit with a markedly different nature, at shorter β-relaxation time scales, in both supercooled fluid and glass colloidal phases.
Publication:
Science
Pub Date:
January 2000
DOI:
Bibcode:
Keywords:
- CHEMISTRY