Modeling gravitational radiation from coalescing binary black holes (original) (raw)

ADS

;

Abstract

With the goal of bringing theory, particularly numerical relativity, to bear on an astrophysical problem of critical interest to gravitational wave observers we introduce a model for coalescence radiation from binary black hole systems. We build our model using the Lazarus approach, a technique that bridges far and close limit approaches with full numerical relativity to solve Einstein equations applied in the truly nonlinear dynamical regime. We specifically study the post-orbital radiation from a system of equal-mass non-spinning black holes, deriving waveforms which indicate strongly circularly polarized radiation of roughly 3% of the system's total energy and 12% of its total angular momentum in just a few cycles. To support this result we first establish the reliability of the late-time part of our model, including the numerical relativity and close-limit components, with a thorough study of waveforms from a sequence of black hole configurations that varies from previously treated head-on collisions to a representative target for ``ISCO'' data corresponding to the end of the inspiral period. We then complete our model with a simple treatment for the early part of the spacetime based on a standard family of initial data for binary black holes in circular orbit. A detailed analysis shows strong robustness in the results as the initial separation of the black holes is increased from 5.0 to 7.8M supporting our waveforms as a suitable basic description of the astrophysical radiation from this system. Finally, a simple fitting of the plunge waveforms is introduced as a first attempt to facilitate the task of analyzing data from gravitational wave detectors.

Publication:

Physical Review D

Pub Date:

June 2002

DOI:

10.1103/PhysRevD.65.124012

10.48550/arXiv.astro-ph/0202469

arXiv:

arXiv:astro-ph/0202469

Bibcode:

2002PhRvD..65l4012B

Keywords:

E-Print:

23 pages, 36 figures, RevTeX4