Effects of climate change on moose populations: Exploring the response horizon through biometric and systems models (original) (raw)
NASA/ADS
Abstract
Interest in the response of moose to climate change has increased because of the potential role they play in the conservation of woodland caribou, and threatened loss to recreational and economic opportunities. The objective of this study is to develop a plausible, parsimonious, systems-level model of moose population dynamics that will be useful in exploring the response of moose populations to climate projections. The study begins with a statistical model of moose carrying capacity, which is then integrated into a systems-level model that predicts moose density based on explicit causal factors. Scenario analysis was conducted using a variety of assumptions concerning biotic and abiotic interactions, and under the A2 climate scenario all model scenarios predict a decline of moose density at the southern limits of the Ontario distribution and an increase at the northern extents. Predicted declines are a result of lower carrying capacity and higher heat stress, parasite loads and wolf predation. Given the sensitivity of the model to density-dependent factors, the indirect effect of parasites on decreased recruitment may have greater impact on moose than the direct effect of increased death rate. Results indicate that conservation planning for woodland caribou populations should account for possible increases in moose and wolf populations.
Publication:
Ecological Modelling
Pub Date:
January 2011
DOI:
10.1016/j.ecolmodel.2011.07.012
Bibcode:
Keywords:
- Climate change simulation;
- Moose population dynamics;
- Wolf predation;
- Parasite;
- Biometric model;
- Systems model;
- Stella