The phylogenetic relationships and generic limits of finches (Fringillidae) (original) (raw)
ADS
;
Abstract
Phylogenetic relationships among the true finches (Fringillidae) have been confounded by the recurrence of similar plumage patterns and use of similar feeding niches. Using a dense taxon sampling and a combination of nuclear and mitochondrial sequences we reconstructed a well resolved and strongly supported phylogenetic hypothesis for this family. We identified three well supported, subfamily level clades: the Holoarctic genus Fringilla (subfamly Fringillinae), the Neotropical Euphonia and Chlorophonia (subfamily Euphoniinae), and the more widespread subfamily Carduelinae for the remaining taxa. Although usually separated in a different family-group taxon (Drepanidinae), the Hawaiian honeycreepers are deeply nested within the Carduelinae and sister to a group of Asian Carpodacus. Other new relationships recovered by this analysis include the placement of the extinct Chaunoproctus ferreorostris as sister to some Asian Carpodacus, a clade combining greenfinches (Carduelis chloris and allies), Rhodospiza and Rhynchostruthus, and a well-supported clade with the aberrant Callacanthis and Pyrrhoplectes together with Carpodacus rubescens. Although part of the large Carduelis–Serinus complex, the poorly known Serinus estherae forms a distinct lineage without close relatives. The traditionally delimited genera Carduelis, Serinus, Carpodacus, Pinicola and Euphonia are polyphyletic or paraphyletic. Based on our results we propose a revised generic classification of finches and describe a new monotypic genus for Carpodacus rubescens.
Publication:
Molecular Phylogenetics and Evolution
Pub Date:
February 2012
DOI:
Bibcode:
Keywords:
- Fringillidae;
- Drepanidinae;
- Carpodacus;
- Chaunoproctus;
- Phylogeny