Bohao Zhang | University of Michigan (original) (raw)
Papers by Bohao Zhang
arXiv (Cornell University), Sep 5, 2023
arXiv (Cornell University), Jun 13, 2024
arXiv (Cornell University), Jan 30, 2023
Ensuring safe, real-time motion planning in arbitrary environments requires a robotic manipulator... more Ensuring safe, real-time motion planning in arbitrary environments requires a robotic manipulator to avoid collisions, obey joint limits, and account for uncertainties in the mass and inertia of objects and the robot itself. This paper proposes Autonomous Robust Manipulation via Optimization with Uncertainty-aware Reachability (ARMOUR), a provablysafe, receding-horizon trajectory planner and tracking controller framework for robotic manipulators to address these challenges. ARMOUR first constructs a robust controller that tracks desired trajectories with bounded error despite uncertain dynamics. ARMOUR then uses a novel recursive Newton-Euler method to compute all inputs required to track any trajectory within a continuum of desired trajectories. Finally, ARMOUR overapproximates the swept volume of the manipulator; this enables one to formulate an optimization problem that can be solved in real-time to synthesize provably-safe motions. This paper compares ARMOUR to state of the art methods on a set of challenging manipulation examples in simulation and demonstrates its ability to ensure safety on real hardware in the presence of model uncertainty without sacrificing performance. Project page: https://roahmlab.github.io/armour/.
arXiv (Cornell University), Feb 4, 2020
For robotic arms to operate in arbitrary environments, especially near people, it is critical to ... more For robotic arms to operate in arbitrary environments, especially near people, it is critical to certify the safety of their motion planning algorithms. However, there is often a trade-off between safety and real-time performance; one can either carefully design safe plans, or rapidly generate potentiallyunsafe plans. This work presents a receding-horizon, real-time trajectory planner with safety guarantees, called ARMTD (Autonomous Reachability-based Manipulator Trajectory Design). The method first computes (offline) a reachable set of parameterized trajectories for each joint of an arm. Each trajectory includes a fail-safe maneuver (braking to a stop). At runtime, in each receding-horizon planning iteration, ARMTD constructs a parameterized reachable set of the full arm in workspace and intersects it with obstacles to generate sub-differentiable, provablyconservative collision-avoidance constraints on the trajectory parameters. ARMTD then performs trajectory optimization over the parameters, subject to these constraints. On a 6 degree-of-freedom arm, ARMTD outperforms CHOMP in simulation, never crashes, and completes a variety of real-time planning tasks on hardware.
IEEE Transactions on Robotics
To move through the world, mobile robots typically use a receding-horizon strategy, wherein they ... more To move through the world, mobile robots typically use a receding-horizon strategy, wherein they execute an old plan while computing a new plan to incorporate new sensor information. A plan should be dynamically feasible, meaning it obeys constraints like the robot's dynamics and obstacle avoidance; it should have liveness, meaning the robot does not stop to plan so frequently that it cannot accomplish tasks; and it should be optimal, meaning that the robot tries to satisfy a user-specified cost function such as reaching a goal location as quickly as possible. Reachability-based Trajectory Design (RTD) is a planning method that can generate provably dynamically-feasible plans. However, RTD solves a nonlinear polynmial optimization program at each planning iteration, preventing optimality guarantees; furthermore, RTD can struggle with liveness because the robot must brake to a stop when the solver finds local minima or cannot find a feasible solution. This paper proposes RTD*, which certifiably finds the globally optimal plan (if such a plan exists) at each planning iteration. This method is enabled by a novel Parallelized Constrained Bernstein Algorithm (PCBA), which is a branch-andbound method for polynomial optimization. The contributions of this paper are: the implementation of PCBA; proofs of bounds on the time and memory usage of PCBA; a comparison of PCBA to state of the art solvers; and the demonstration of PCBA/RTD* on a mobile robot. RTD* outperforms RTD in terms of optimality and liveness for real-time planning in a variety of environments with randomly-placed obstacles.
Robotics: Science and Systems XVI
For robotic arms to operate in arbitrary environments, especially near people, it is critical to ... more For robotic arms to operate in arbitrary environments, especially near people, it is critical to certify the safety of their motion planning algorithms. However, there is often a trade-o↵ between safety and real-time performance; one can either carefully design safe plans, or rapidly generate potentiallyunsafe plans. This work presents a receding-horizon, real-time trajectory planner with safety guarantees, called ARMTD (Autonomous Reachability-based Manipulator Trajectory Design). The method first computes (o✏ine) a reachable set of parameterized trajectories for each joint of an arm. Each trajectory includes a fail-safe maneuver (braking to a stop). At runtime, in each receding-horizon planning iteration, ARMTD constructs a parameterized reachable set of the full arm in workspace and intersects it with obstacles to generate sub-di↵erentiable, provablyconservative collision-avoidance constraints on the trajectory parameters. ARMTD then performs trajectory optimization over the parameters, subject to these constraints. On a 6 degree-of-freedom arm, ARMTD outperforms CHOMP in simulation, never crashes, and completes a variety of real-time planning tasks on hardware.
arXiv (Cornell University), Sep 5, 2023
arXiv (Cornell University), Jun 13, 2024
arXiv (Cornell University), Jan 30, 2023
Ensuring safe, real-time motion planning in arbitrary environments requires a robotic manipulator... more Ensuring safe, real-time motion planning in arbitrary environments requires a robotic manipulator to avoid collisions, obey joint limits, and account for uncertainties in the mass and inertia of objects and the robot itself. This paper proposes Autonomous Robust Manipulation via Optimization with Uncertainty-aware Reachability (ARMOUR), a provablysafe, receding-horizon trajectory planner and tracking controller framework for robotic manipulators to address these challenges. ARMOUR first constructs a robust controller that tracks desired trajectories with bounded error despite uncertain dynamics. ARMOUR then uses a novel recursive Newton-Euler method to compute all inputs required to track any trajectory within a continuum of desired trajectories. Finally, ARMOUR overapproximates the swept volume of the manipulator; this enables one to formulate an optimization problem that can be solved in real-time to synthesize provably-safe motions. This paper compares ARMOUR to state of the art methods on a set of challenging manipulation examples in simulation and demonstrates its ability to ensure safety on real hardware in the presence of model uncertainty without sacrificing performance. Project page: https://roahmlab.github.io/armour/.
arXiv (Cornell University), Feb 4, 2020
For robotic arms to operate in arbitrary environments, especially near people, it is critical to ... more For robotic arms to operate in arbitrary environments, especially near people, it is critical to certify the safety of their motion planning algorithms. However, there is often a trade-off between safety and real-time performance; one can either carefully design safe plans, or rapidly generate potentiallyunsafe plans. This work presents a receding-horizon, real-time trajectory planner with safety guarantees, called ARMTD (Autonomous Reachability-based Manipulator Trajectory Design). The method first computes (offline) a reachable set of parameterized trajectories for each joint of an arm. Each trajectory includes a fail-safe maneuver (braking to a stop). At runtime, in each receding-horizon planning iteration, ARMTD constructs a parameterized reachable set of the full arm in workspace and intersects it with obstacles to generate sub-differentiable, provablyconservative collision-avoidance constraints on the trajectory parameters. ARMTD then performs trajectory optimization over the parameters, subject to these constraints. On a 6 degree-of-freedom arm, ARMTD outperforms CHOMP in simulation, never crashes, and completes a variety of real-time planning tasks on hardware.
IEEE Transactions on Robotics
To move through the world, mobile robots typically use a receding-horizon strategy, wherein they ... more To move through the world, mobile robots typically use a receding-horizon strategy, wherein they execute an old plan while computing a new plan to incorporate new sensor information. A plan should be dynamically feasible, meaning it obeys constraints like the robot's dynamics and obstacle avoidance; it should have liveness, meaning the robot does not stop to plan so frequently that it cannot accomplish tasks; and it should be optimal, meaning that the robot tries to satisfy a user-specified cost function such as reaching a goal location as quickly as possible. Reachability-based Trajectory Design (RTD) is a planning method that can generate provably dynamically-feasible plans. However, RTD solves a nonlinear polynmial optimization program at each planning iteration, preventing optimality guarantees; furthermore, RTD can struggle with liveness because the robot must brake to a stop when the solver finds local minima or cannot find a feasible solution. This paper proposes RTD*, which certifiably finds the globally optimal plan (if such a plan exists) at each planning iteration. This method is enabled by a novel Parallelized Constrained Bernstein Algorithm (PCBA), which is a branch-andbound method for polynomial optimization. The contributions of this paper are: the implementation of PCBA; proofs of bounds on the time and memory usage of PCBA; a comparison of PCBA to state of the art solvers; and the demonstration of PCBA/RTD* on a mobile robot. RTD* outperforms RTD in terms of optimality and liveness for real-time planning in a variety of environments with randomly-placed obstacles.
Robotics: Science and Systems XVI
For robotic arms to operate in arbitrary environments, especially near people, it is critical to ... more For robotic arms to operate in arbitrary environments, especially near people, it is critical to certify the safety of their motion planning algorithms. However, there is often a trade-o↵ between safety and real-time performance; one can either carefully design safe plans, or rapidly generate potentiallyunsafe plans. This work presents a receding-horizon, real-time trajectory planner with safety guarantees, called ARMTD (Autonomous Reachability-based Manipulator Trajectory Design). The method first computes (o✏ine) a reachable set of parameterized trajectories for each joint of an arm. Each trajectory includes a fail-safe maneuver (braking to a stop). At runtime, in each receding-horizon planning iteration, ARMTD constructs a parameterized reachable set of the full arm in workspace and intersects it with obstacles to generate sub-di↵erentiable, provablyconservative collision-avoidance constraints on the trajectory parameters. ARMTD then performs trajectory optimization over the parameters, subject to these constraints. On a 6 degree-of-freedom arm, ARMTD outperforms CHOMP in simulation, never crashes, and completes a variety of real-time planning tasks on hardware.