Craig Dobry | University of Michigan (original) (raw)

Papers by Craig Dobry

Research paper thumbnail of Large-Scale Analysis of Kinase Signaling in Yeast Pseudohyphal Development Identifies Regulation of Ribonucleoprotein Granules

PLOS Genetics, 2015

Yeast pseudohyphal filamentation is a stress-responsive growth transition relevant to processes r... more Yeast pseudohyphal filamentation is a stress-responsive growth transition relevant to processes required for virulence in pathogenic fungi. Pseudohyphal growth is controlled through a regulatory network encompassing conserved MAPK (Ste20p, Ste11p, Ste7p, Kss1p, and Fus3p), protein kinase A (Tpk2p), Elm1p, and Snf1p kinase pathways; however, the scope of these pathways is not fully understood. Here, we implemented quantitative phosphoproteomics to identify each of these signaling networks, generating a kinase-dead mutant in filamentous S. cerevisiae and surveying for differential phosphorylation. By this approach, we identified 439 phosphoproteins dependent upon pseudohyphal growth kinases. We report novel phosphorylation sites in 543 peptides, including phosphorylated residues in Ras2p and Flo8p required for wild-type filamentous growth. Phosphoproteins in these kinase signaling networks were enriched for ribonucleoprotein (RNP) granule components, and we observe co-localization of Kss1p, Fus3p, Ste20p, and Tpk2p with the RNP component Igo1p. These kinases localize in puncta with GFP-visualized mRNA, and KSS1 is required for wild-type levels of mRNA localization in RNPs. Kss1p pathway activity is reduced in lsm1Δ/Δ and pat1Δ/Δ strains, and these genes encoding P-body proteins are epistatic to STE7. The P-body protein Dhh1p is also required for hyphal development in Candida albicans. Collectively, this study presents a wealth of data identifying the yeast phosphoproteome in pseudohyphal growth and regulatory interrelationships between pseudohyphal growth kinases and RNPs.

Research paper thumbnail of Transcribed dinucleotide repeat polymorphism in the IGF2 gene

Human Molecular Genetics, 1994

Research paper thumbnail of Large-Scale Analysis of Kinase Signaling in Yeast Pseudohyphal Development Identifies Regulation of Ribonucleoprotein Granules

PLOS Genetics, 2015

Yeast pseudohyphal filamentation is a stress-responsive growth transition relevant to processes r... more Yeast pseudohyphal filamentation is a stress-responsive growth transition relevant to processes required for virulence in pathogenic fungi. Pseudohyphal growth is controlled through a regulatory network encompassing conserved MAPK (Ste20p, Ste11p, Ste7p, Kss1p, and Fus3p), protein kinase A (Tpk2p), Elm1p, and Snf1p kinase pathways; however, the scope of these pathways is not fully understood. Here, we implemented quantitative phosphoproteomics to identify each of these signaling networks, generating a kinase-dead mutant in filamentous S. cerevisiae and surveying for differential phosphorylation. By this approach, we identified 439 phosphoproteins dependent upon pseudohyphal growth kinases. We report novel phosphorylation sites in 543 peptides, including phosphorylated residues in Ras2p and Flo8p required for wild-type filamentous growth. Phosphoproteins in these kinase signaling networks were enriched for ribonucleoprotein (RNP) granule components, and we observe co-localization of Kss1p, Fus3p, Ste20p, and Tpk2p with the RNP component Igo1p. These kinases localize in puncta with GFP-visualized mRNA, and KSS1 is required for wild-type levels of mRNA localization in RNPs. Kss1p pathway activity is reduced in lsm1Δ/Δ and pat1Δ/Δ strains, and these genes encoding P-body proteins are epistatic to STE7. The P-body protein Dhh1p is also required for hyphal development in Candida albicans. Collectively, this study presents a wealth of data identifying the yeast phosphoproteome in pseudohyphal growth and regulatory interrelationships between pseudohyphal growth kinases and RNPs.

Research paper thumbnail of Regulation ofthejunBGenebyv-src

Research paper thumbnail of Regulation of the junB gene by v-src

Molecular and cellular biology, 1992

The proteins encoded by cellular and viral src genes are believed to be involved in the transmiss... more The proteins encoded by cellular and viral src genes are believed to be involved in the transmission of mitogenic signals, the nuclear recipients of which are largely unknown. In this work, we report that four different v-src-transformed cell lines from three different species possess elevated levels of junB transcripts. Transient expression of junB promoter-chloramphenicol acetyltransferase constructs in NIH 3T3 cells was used to demonstrate that the increase in junB transcripts was specifically associated with v-src expression and could not be recapitulated with a c-src, v-H-ras, or v-raf expression vector. Deletion mutants were used to localize the v-src-responsive region in the junB promoter to a 121-nucleotide region encompassing the CCAAT and TATAA elements. This region is distinct from one in the 5' untranslated region of the junB gene which is required to maintain its high-level basal expression. Point mutagenesis of the junB TATAA box completely abolished v-src responsi...

Research paper thumbnail of Abstract 1842: Vitamin D compounds induce BRCA1 expression and inhibit breast stem cells

Research paper thumbnail of Novel indole-2-carboxamide compounds are potent broad-spectrum antivirals active against western equine encephalitis virus in vivo

Journal of virology, 2014

Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses,... more Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950-957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535-3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222-9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These c...

Research paper thumbnail of Discovery of anthranilamides as a novel class of inhibitors of neurotropic alphavirus replication

Bioorganic & Medicinal Chemistry, 2015

Neurotropic alphaviruses are debilitating pathogens that infect the central nervous system (CNS) ... more Neurotropic alphaviruses are debilitating pathogens that infect the central nervous system (CNS) and are transmitted to humans via mosquitoes. There exist no effective human vaccines against these viruses, underlining the need for effective antivirals, but no antiviral drugs are available for treating infection once the viruses have invaded the CNS. Previously, we reported the development of novel indole-2-carboxamide-based inhibitors of alphavirus replication that demonstrate significant reduction of viral titer and achieve measurable brain permeation in a pharmacokinetic mouse model. Herein we report our continued efforts to improve physicochemical properties predictive of in vivo blood-brain barrier (BBB) permeability through reduction of overall molecular weight, replacing the indole core with a variety of aromatic and non-aromatic monocyclics. These studies culminated in the identification of simple anthranilamides that retain excellent potency with improved metabolic stability and significantly greater aqueous solubility. Furthermore, in a live virus study, we showed that two new compounds were capable of reducing viral titer by two orders of magnitude and that these compounds likely exert their effects through a mechanism similar to that of our indole-2-carboxamide inhibitors.

Research paper thumbnail of Overexpression of autophagy-related genes inhibits yeast filamentous growth

Autophagy

Under conditions of nitrogen stress, the budding yeast S. cerevisiae initiates a cellular respons... more Under conditions of nitrogen stress, the budding yeast S. cerevisiae initiates a cellular response involving the activation of autophagy, an intracellular catabolic process for the degradation and recycling of proteins and organelles. In certain strains of yeast, nitrogen stress also drives a striking developmental transition to a filamentous form of growth, in which cells remain physically connected after cytokinesis. We recently identified an interrelationship between these processes, with the inhibition of autophagy resulting in exaggerated filamentous growth. Our results suggest a model wherein autophagy mitigates nutrient stress, and filamentous growth is responsive to the degree of this stress. Here, we extended these studies to encompass a phenotypic analysis of filamentous growth upon overexpression of autophagy-related (ATG) genes. Specifically, overexpression of ATG1, ATG3, ATG7, ATG17, ATG19, ATG23, ATG24 and ATG29 inhibited filamentous growth. From our understanding of a...

Research paper thumbnail of Localization of autophagy-related proteins in yeast using a versatile plasmid-based resource of fluorescent protein fusions

Autophagy, 2008

Plasmid-based collections of fluorescent protein fusions are valuable and versatile resources, fa... more Plasmid-based collections of fluorescent protein fusions are valuable and versatile resources, facilitating systematic studies of protein localization in multiple genetic backgrounds. At present, however, few such collections exist for the analysis of protein localization in any organism. To address this deficiency, we present here a plasmid-based set of resources for the analysis of protein localization in the budding yeast. Specifically, we constructed a suite of low-copy destination vectors for recombination-based cloning of yeast genes as fluorescent protein fusions. We cloned a set of 384 yeast genes encoding kinases, transcription factors and signaling proteins as "recombination-ready" cassettes; by Gateway cloning, these genes with native promoters can be easily introduced into the destination vectors described above, generating carboxy-terminal fusions to fluorescent proteins. Using these reagents, we constructed a subcollection of 276 genes encoding carboxy-termin...

Research paper thumbnail of A small molecule-directed approach to control protein localization and function

Yeast (Chichester, England), 2008

Protein localization is tightly linked with function, such that the subcellular distribution of a... more Protein localization is tightly linked with function, such that the subcellular distribution of a protein serves as an important control point regulating activity. Exploiting this regulatory mechanism, we present here a general approach by which protein location, and hence function, may be controlled on demand in the budding yeast. In this system a small molecule, rapamycin, is used to temporarily recruit a strong cellular address signal to the target protein, placing subcellular localization under control of the selective chemical stimulus. The kinetics of this system are rapid: rapamycin-directed nucleo-cytoplasmic transport is evident 10-12 min post-treatment and the process is reversible upon removal of rapamycin. Accordingly, we envision this platform as a promising approach for the systematic construction of conditional loss-of-function mutants. As proof of principle, we used this system to direct nuclear export of the essential heat shock transcription factor Hsf1p, thereby m...

Research paper thumbnail of Discovery of Potent Broad Spectrum Antivirals Derived from Marine Actinobacteria

PLoS ONE, 2013

Natural products provide a vast array of chemical structures to explore in the discovery of new m... more Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the continued development of broadly active antiviral compounds.

Research paper thumbnail of A Large-Scale Complex Haploinsufficiency-Based Genetic Interaction Screen in Candida albicans: Analysis of the RAM Network during Morphogenesis

PLoS Genetics, 2011

The morphogenetic transition between yeast and filamentous forms of the human fungal pathogen Can... more The morphogenetic transition between yeast and filamentous forms of the human fungal pathogen Candida albicans is regulated by a variety of signaling pathways. How these pathways interact to orchestrate morphogenesis, however, has not been as well characterized. To address this question and to identify genes that interact with the Regulation of Ace2 and Morphogenesis (RAM) pathway during filamentation, we report the first large-scale genetic interaction screen in C. albicans.

Research paper thumbnail of Large-Scale Analysis of Yeast Filamentous Growth by Systematic Gene Disruption and Overexpression

Molecular Biology of the Cell, 2008

Under certain conditions of nutrient stress, the budding yeast Saccharomyces cerevisiae initiates... more Under certain conditions of nutrient stress, the budding yeast Saccharomyces cerevisiae initiates a striking developmental transition to a filamentous form of growth, resembling developmental transitions required for virulence in closely related pathogenic fungi. In yeast, filamentous growth involves known mitogen-activated protein kinase and protein kinase A signaling modules, but the full scope of this extensive filamentous response has not been delineated. Accordingly, we have undertaken the first systematic gene disruption and overexpression analysis of yeast filamentous growth. Standard laboratory strains of yeast are nonfilamentous; thus, we constructed a unique set of reagents in the filamentous ⌺1278b strain, encompassing 3627 integrated transposon insertion alleles and 2043 overexpression constructs. Collectively, we analyzed 4528 yeast genes with these reagents and identified 487 genes conferring mutant filamentous phenotypes upon transposon insertion and/or gene overexpression. Using a fluorescent protein reporter integrated at the MUC1 locus, we further assayed each filamentous growth mutant for aberrant protein levels of the key flocculence factor Muc1p. Our results indicate a variety of genes and pathways affecting filamentous growth. In total, this filamentous growth gene set represents a wealth of yeast biology, highlighting 84 genes of uncharacterized function and an underappreciated role for the mitochondrial retrograde signaling pathway as an inhibitor of filamentous growth.

Research paper thumbnail of Analysis of the Yeast Kinome Reveals a Network of Regulated Protein Localization during Filamentous Growth

Molecular Biology of the Cell, 2008

Golgi fragmentation is a common feature in multiple neurodegenerative diseases; however, the prec... more Golgi fragmentation is a common feature in multiple neurodegenerative diseases; however, the precise mechanism that causes fragmentation remains obscure. A potential link between Cdk5 and Golgi fragmentation in Alzheimer's disease (AD) was investigated in this study. Since Golgi is physiologically fragmented during mitosis by Cdc2 kinase and current Cdk5-specific chemical inhibitors target Cdc2 as well, development of novel tools to modulate Cdk5 activity was essential.

Research paper thumbnail of Optimization of Novel Indole-2-carboxamide Inhibitors of Neurotropic Alphavirus Replication

Journal of Medicinal Chemistry, 2013

Neurotropic alphaviruses, which include western equine encephalitis virus (WEEV) and Fort Morgan ... more Neurotropic alphaviruses, which include western equine encephalitis virus (WEEV) and Fort Morgan virus, are mosquito-borne pathogens that infect the central nervous system causing acute and potentially fatal encephalitis. We previously reported a novel series of indole-2-carboxamides as alphavirus replication inhibitors, one of which conferred protection against neuroadapted Sindbis virus infection in mice. We describe here further development of this series, resulting in 10-fold improvement in potency in a WEEV replicon assay and up to 40-fold increases in half-lives in mouse liver microsomes. Using a rhodamine123 uptake assay in MDR1-MDCKII cells, we were able to identify structural modifications that markedly reduce recognition by P-glycoprotein, the key efflux transporter at the blood-brain barrier. In a preliminary mouse PK study, we were able to demonstrate that two new analogues could achieve higher and/or longer plasma drug exposures than our previous lead and that one compound achieved measurable drug levels in the brain.

Research paper thumbnail of A Profile of Differentially Abundant Proteins at the Yeast Cell Periphery during Pseudohyphal Growth

Journal of Biological Chemistry, 2010

Yeast filamentous growth is a stress response to conditions of nitrogen deprivation, wherein yeas... more Yeast filamentous growth is a stress response to conditions of nitrogen deprivation, wherein yeast colonies form pseudohyphal filaments of elongated and connected cells. As proteins mediating adhesion and transport are required for this growth transition, we expect that the protein complement at the yeast cell periphery plays a critical and tightly regulated role in pseudohyphal filamentation. To identify proteins differentially abundant at the yeast cell periphery during pseudohyphal growth, we generated quantitative proteomic profiles of plasma membrane protein preparations under conditions of vegetative growth and filamentation. By isobaric tags for relative and absolute quantification chemistry and two-dimensional liquid chromatography-tandem mass spectrometry, we profiled 2463 peptides and 356 proteins, identifying 11 differentially abundant proteins that localize to the yeast cell periphery. This protein set includes Ylr414cp, herein renamed Pun1p, a previously uncharacterized protein localized to the plasma membrane compartment of Can1. Pun1p abundance is doubled under conditions of nitrogen stress, and deletion of PUN1 abolishes filamentous growth in haploids and diploids; pun1Delta mutants are noninvasive, lack surface-spread filamentation, grow slowly, and exhibit impaired cell adhesion. Conversely, overexpression of PUN1 results in exaggerated cell elongation under conditions of nitrogen stress. PUN1 contributes to yeast nitrogen signaling, as pun1Delta mutants misregulate amino acid biosynthetic genes during nitrogen stress. By chromatin immunoprecipitation and reverse transcription-PCR, we find that the filamentous growth factor Mss11p directly binds the PUN1 promoter and regulates its transcription. In total, this study provides the first profile of differential protein abundance during pseudohyphal growth, identifying a previously uncharacterized membrane compartment of Can1 protein required for wild-type nitrogen signaling and filamentous growth.

Research paper thumbnail of Transcribed dinucleotide repeat polymorphism in the IGF2 gene

Human Molecular Genetics, 1994

Research paper thumbnail of Genetic Networks Inducing Invasive Growth in Saccharomyces cerevisiae Identified Through Systematic Genome-Wide Overexpression

Genetics, 2013

The budding yeast Saccharomyces cerevisiae can respond to nutritional and environmental stress by... more The budding yeast Saccharomyces cerevisiae can respond to nutritional and environmental stress by implementing a morphogenetic program wherein cells elongate and interconnect, forming pseudohyphal filaments. This growth transition has been studied extensively as a model signaling system with similarity to processes of hyphal development that are linked with virulence in related fungal pathogens. Classic studies have identified core pseudohyphal growth signaling modules in yeast; however, the scope of regulatory networks that control yeast filamentation is broad and incompletely defined. Here, we address the genetic basis of yeast pseudohyphal growth by implementing a systematic analysis of 4909 genes for overexpression phenotypes in a filamentous strain of S. cerevisiae. Our results identify 551 genes conferring exaggerated invasive growth upon overexpression under normal vegetative growth conditions. This cohort includes 79 genes lacking previous phenotypic characterization. Pathway enrichment analysis of the gene set identifies networks mediating mitogen-activated protein kinase (MAPK) signaling and cell cycle progression. In particular, overexpression screening suggests that nuclear export of the osmoresponsive MAPK Hog1p may enhance pseudohyphal growth. The function of nuclear Hog1p is unclear from previous studies, but our analysis using a nuclear-depleted form of Hog1p is consistent with a role for nuclear Hog1p in repressing pseudohyphal growth. Through epistasis and deletion studies, we also identified genetic relationships with the G2 cyclin Clb2p and phenotypes in filamentation induced by S-phase arrest. In sum, this work presents a unique and informative resource toward understanding the breadth of genes and pathways that collectively constitute the molecular basis of filamentation.

Research paper thumbnail of Unconventional Genomic Architecture in the Budding Yeast Saccharomyces cerevisiae Masks the Nested Antisense Gene NAG1

Eukaryotic Cell, 2008

The genomic architecture of the budding yeast Saccharomyces cerevisiae is typical of other eukary... more The genomic architecture of the budding yeast Saccharomyces cerevisiae is typical of other eukaryotes in that genes are spatially organized into discrete and nonoverlapping units. Inherent in this organizational model is the assumption that protein-coding sequences do not overlap completely. Here, we present evidence to the contrary, defining a previously overlooked yeast gene, NAG1 (for nested antisense gene) nested entirely within the coding sequence of the YGR031W open reading frame in an antisense orientation on the opposite strand. NAG1 encodes a 19-kDa protein, detected by Western blotting of hemagglutinin (HA)-tagged Nag1p with anti-HA antibodies and by ␤-galactosidase analysis of a NAG1-lacZ fusion. NAG1 is evolutionarily conserved as a unit with YGR031W in bacteria and fungi. Unlike the YGR031WP protein product, however, which localizes to the mitochondria, Nag1p localizes to the cell periphery, exhibiting properties consistent with those of a plasma membrane protein. Phenotypic analysis of a site-directed mutant (nag1-1) disruptive for NAG1 but silent with respect to YGR031W, defines a role for NAG1 in yeast cell wall biogenesis; microarray profiling of nag1-1 indicates decreased expression of genes contributing to cell wall organization, and the nag1-1 mutant is hypersensitive to the cell wall-perturbing agent calcofluor white. Furthermore, production of Nag1p is dependent upon the presence of the cell wall integrity pathway mitogen-activated protein kinase Slt2p and its downstream transcription factor Rlm1p. Thus, NAG1 is important for two reasons. First, it contributes to yeast cell wall biogenesis. Second, its genomic context is novel, raising the possibility that other nested proteincoding genes may exist in eukaryotic genomes.

Research paper thumbnail of Large-Scale Analysis of Kinase Signaling in Yeast Pseudohyphal Development Identifies Regulation of Ribonucleoprotein Granules

PLOS Genetics, 2015

Yeast pseudohyphal filamentation is a stress-responsive growth transition relevant to processes r... more Yeast pseudohyphal filamentation is a stress-responsive growth transition relevant to processes required for virulence in pathogenic fungi. Pseudohyphal growth is controlled through a regulatory network encompassing conserved MAPK (Ste20p, Ste11p, Ste7p, Kss1p, and Fus3p), protein kinase A (Tpk2p), Elm1p, and Snf1p kinase pathways; however, the scope of these pathways is not fully understood. Here, we implemented quantitative phosphoproteomics to identify each of these signaling networks, generating a kinase-dead mutant in filamentous S. cerevisiae and surveying for differential phosphorylation. By this approach, we identified 439 phosphoproteins dependent upon pseudohyphal growth kinases. We report novel phosphorylation sites in 543 peptides, including phosphorylated residues in Ras2p and Flo8p required for wild-type filamentous growth. Phosphoproteins in these kinase signaling networks were enriched for ribonucleoprotein (RNP) granule components, and we observe co-localization of Kss1p, Fus3p, Ste20p, and Tpk2p with the RNP component Igo1p. These kinases localize in puncta with GFP-visualized mRNA, and KSS1 is required for wild-type levels of mRNA localization in RNPs. Kss1p pathway activity is reduced in lsm1Δ/Δ and pat1Δ/Δ strains, and these genes encoding P-body proteins are epistatic to STE7. The P-body protein Dhh1p is also required for hyphal development in Candida albicans. Collectively, this study presents a wealth of data identifying the yeast phosphoproteome in pseudohyphal growth and regulatory interrelationships between pseudohyphal growth kinases and RNPs.

Research paper thumbnail of Transcribed dinucleotide repeat polymorphism in the IGF2 gene

Human Molecular Genetics, 1994

Research paper thumbnail of Large-Scale Analysis of Kinase Signaling in Yeast Pseudohyphal Development Identifies Regulation of Ribonucleoprotein Granules

PLOS Genetics, 2015

Yeast pseudohyphal filamentation is a stress-responsive growth transition relevant to processes r... more Yeast pseudohyphal filamentation is a stress-responsive growth transition relevant to processes required for virulence in pathogenic fungi. Pseudohyphal growth is controlled through a regulatory network encompassing conserved MAPK (Ste20p, Ste11p, Ste7p, Kss1p, and Fus3p), protein kinase A (Tpk2p), Elm1p, and Snf1p kinase pathways; however, the scope of these pathways is not fully understood. Here, we implemented quantitative phosphoproteomics to identify each of these signaling networks, generating a kinase-dead mutant in filamentous S. cerevisiae and surveying for differential phosphorylation. By this approach, we identified 439 phosphoproteins dependent upon pseudohyphal growth kinases. We report novel phosphorylation sites in 543 peptides, including phosphorylated residues in Ras2p and Flo8p required for wild-type filamentous growth. Phosphoproteins in these kinase signaling networks were enriched for ribonucleoprotein (RNP) granule components, and we observe co-localization of Kss1p, Fus3p, Ste20p, and Tpk2p with the RNP component Igo1p. These kinases localize in puncta with GFP-visualized mRNA, and KSS1 is required for wild-type levels of mRNA localization in RNPs. Kss1p pathway activity is reduced in lsm1Δ/Δ and pat1Δ/Δ strains, and these genes encoding P-body proteins are epistatic to STE7. The P-body protein Dhh1p is also required for hyphal development in Candida albicans. Collectively, this study presents a wealth of data identifying the yeast phosphoproteome in pseudohyphal growth and regulatory interrelationships between pseudohyphal growth kinases and RNPs.

Research paper thumbnail of Regulation ofthejunBGenebyv-src

Research paper thumbnail of Regulation of the junB gene by v-src

Molecular and cellular biology, 1992

The proteins encoded by cellular and viral src genes are believed to be involved in the transmiss... more The proteins encoded by cellular and viral src genes are believed to be involved in the transmission of mitogenic signals, the nuclear recipients of which are largely unknown. In this work, we report that four different v-src-transformed cell lines from three different species possess elevated levels of junB transcripts. Transient expression of junB promoter-chloramphenicol acetyltransferase constructs in NIH 3T3 cells was used to demonstrate that the increase in junB transcripts was specifically associated with v-src expression and could not be recapitulated with a c-src, v-H-ras, or v-raf expression vector. Deletion mutants were used to localize the v-src-responsive region in the junB promoter to a 121-nucleotide region encompassing the CCAAT and TATAA elements. This region is distinct from one in the 5' untranslated region of the junB gene which is required to maintain its high-level basal expression. Point mutagenesis of the junB TATAA box completely abolished v-src responsi...

Research paper thumbnail of Abstract 1842: Vitamin D compounds induce BRCA1 expression and inhibit breast stem cells

Research paper thumbnail of Novel indole-2-carboxamide compounds are potent broad-spectrum antivirals active against western equine encephalitis virus in vivo

Journal of virology, 2014

Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses,... more Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950-957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535-3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222-9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These c...

Research paper thumbnail of Discovery of anthranilamides as a novel class of inhibitors of neurotropic alphavirus replication

Bioorganic & Medicinal Chemistry, 2015

Neurotropic alphaviruses are debilitating pathogens that infect the central nervous system (CNS) ... more Neurotropic alphaviruses are debilitating pathogens that infect the central nervous system (CNS) and are transmitted to humans via mosquitoes. There exist no effective human vaccines against these viruses, underlining the need for effective antivirals, but no antiviral drugs are available for treating infection once the viruses have invaded the CNS. Previously, we reported the development of novel indole-2-carboxamide-based inhibitors of alphavirus replication that demonstrate significant reduction of viral titer and achieve measurable brain permeation in a pharmacokinetic mouse model. Herein we report our continued efforts to improve physicochemical properties predictive of in vivo blood-brain barrier (BBB) permeability through reduction of overall molecular weight, replacing the indole core with a variety of aromatic and non-aromatic monocyclics. These studies culminated in the identification of simple anthranilamides that retain excellent potency with improved metabolic stability and significantly greater aqueous solubility. Furthermore, in a live virus study, we showed that two new compounds were capable of reducing viral titer by two orders of magnitude and that these compounds likely exert their effects through a mechanism similar to that of our indole-2-carboxamide inhibitors.

Research paper thumbnail of Overexpression of autophagy-related genes inhibits yeast filamentous growth

Autophagy

Under conditions of nitrogen stress, the budding yeast S. cerevisiae initiates a cellular respons... more Under conditions of nitrogen stress, the budding yeast S. cerevisiae initiates a cellular response involving the activation of autophagy, an intracellular catabolic process for the degradation and recycling of proteins and organelles. In certain strains of yeast, nitrogen stress also drives a striking developmental transition to a filamentous form of growth, in which cells remain physically connected after cytokinesis. We recently identified an interrelationship between these processes, with the inhibition of autophagy resulting in exaggerated filamentous growth. Our results suggest a model wherein autophagy mitigates nutrient stress, and filamentous growth is responsive to the degree of this stress. Here, we extended these studies to encompass a phenotypic analysis of filamentous growth upon overexpression of autophagy-related (ATG) genes. Specifically, overexpression of ATG1, ATG3, ATG7, ATG17, ATG19, ATG23, ATG24 and ATG29 inhibited filamentous growth. From our understanding of a...

Research paper thumbnail of Localization of autophagy-related proteins in yeast using a versatile plasmid-based resource of fluorescent protein fusions

Autophagy, 2008

Plasmid-based collections of fluorescent protein fusions are valuable and versatile resources, fa... more Plasmid-based collections of fluorescent protein fusions are valuable and versatile resources, facilitating systematic studies of protein localization in multiple genetic backgrounds. At present, however, few such collections exist for the analysis of protein localization in any organism. To address this deficiency, we present here a plasmid-based set of resources for the analysis of protein localization in the budding yeast. Specifically, we constructed a suite of low-copy destination vectors for recombination-based cloning of yeast genes as fluorescent protein fusions. We cloned a set of 384 yeast genes encoding kinases, transcription factors and signaling proteins as "recombination-ready" cassettes; by Gateway cloning, these genes with native promoters can be easily introduced into the destination vectors described above, generating carboxy-terminal fusions to fluorescent proteins. Using these reagents, we constructed a subcollection of 276 genes encoding carboxy-termin...

Research paper thumbnail of A small molecule-directed approach to control protein localization and function

Yeast (Chichester, England), 2008

Protein localization is tightly linked with function, such that the subcellular distribution of a... more Protein localization is tightly linked with function, such that the subcellular distribution of a protein serves as an important control point regulating activity. Exploiting this regulatory mechanism, we present here a general approach by which protein location, and hence function, may be controlled on demand in the budding yeast. In this system a small molecule, rapamycin, is used to temporarily recruit a strong cellular address signal to the target protein, placing subcellular localization under control of the selective chemical stimulus. The kinetics of this system are rapid: rapamycin-directed nucleo-cytoplasmic transport is evident 10-12 min post-treatment and the process is reversible upon removal of rapamycin. Accordingly, we envision this platform as a promising approach for the systematic construction of conditional loss-of-function mutants. As proof of principle, we used this system to direct nuclear export of the essential heat shock transcription factor Hsf1p, thereby m...

Research paper thumbnail of Discovery of Potent Broad Spectrum Antivirals Derived from Marine Actinobacteria

PLoS ONE, 2013

Natural products provide a vast array of chemical structures to explore in the discovery of new m... more Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the continued development of broadly active antiviral compounds.

Research paper thumbnail of A Large-Scale Complex Haploinsufficiency-Based Genetic Interaction Screen in Candida albicans: Analysis of the RAM Network during Morphogenesis

PLoS Genetics, 2011

The morphogenetic transition between yeast and filamentous forms of the human fungal pathogen Can... more The morphogenetic transition between yeast and filamentous forms of the human fungal pathogen Candida albicans is regulated by a variety of signaling pathways. How these pathways interact to orchestrate morphogenesis, however, has not been as well characterized. To address this question and to identify genes that interact with the Regulation of Ace2 and Morphogenesis (RAM) pathway during filamentation, we report the first large-scale genetic interaction screen in C. albicans.

Research paper thumbnail of Large-Scale Analysis of Yeast Filamentous Growth by Systematic Gene Disruption and Overexpression

Molecular Biology of the Cell, 2008

Under certain conditions of nutrient stress, the budding yeast Saccharomyces cerevisiae initiates... more Under certain conditions of nutrient stress, the budding yeast Saccharomyces cerevisiae initiates a striking developmental transition to a filamentous form of growth, resembling developmental transitions required for virulence in closely related pathogenic fungi. In yeast, filamentous growth involves known mitogen-activated protein kinase and protein kinase A signaling modules, but the full scope of this extensive filamentous response has not been delineated. Accordingly, we have undertaken the first systematic gene disruption and overexpression analysis of yeast filamentous growth. Standard laboratory strains of yeast are nonfilamentous; thus, we constructed a unique set of reagents in the filamentous ⌺1278b strain, encompassing 3627 integrated transposon insertion alleles and 2043 overexpression constructs. Collectively, we analyzed 4528 yeast genes with these reagents and identified 487 genes conferring mutant filamentous phenotypes upon transposon insertion and/or gene overexpression. Using a fluorescent protein reporter integrated at the MUC1 locus, we further assayed each filamentous growth mutant for aberrant protein levels of the key flocculence factor Muc1p. Our results indicate a variety of genes and pathways affecting filamentous growth. In total, this filamentous growth gene set represents a wealth of yeast biology, highlighting 84 genes of uncharacterized function and an underappreciated role for the mitochondrial retrograde signaling pathway as an inhibitor of filamentous growth.

Research paper thumbnail of Analysis of the Yeast Kinome Reveals a Network of Regulated Protein Localization during Filamentous Growth

Molecular Biology of the Cell, 2008

Golgi fragmentation is a common feature in multiple neurodegenerative diseases; however, the prec... more Golgi fragmentation is a common feature in multiple neurodegenerative diseases; however, the precise mechanism that causes fragmentation remains obscure. A potential link between Cdk5 and Golgi fragmentation in Alzheimer's disease (AD) was investigated in this study. Since Golgi is physiologically fragmented during mitosis by Cdc2 kinase and current Cdk5-specific chemical inhibitors target Cdc2 as well, development of novel tools to modulate Cdk5 activity was essential.

Research paper thumbnail of Optimization of Novel Indole-2-carboxamide Inhibitors of Neurotropic Alphavirus Replication

Journal of Medicinal Chemistry, 2013

Neurotropic alphaviruses, which include western equine encephalitis virus (WEEV) and Fort Morgan ... more Neurotropic alphaviruses, which include western equine encephalitis virus (WEEV) and Fort Morgan virus, are mosquito-borne pathogens that infect the central nervous system causing acute and potentially fatal encephalitis. We previously reported a novel series of indole-2-carboxamides as alphavirus replication inhibitors, one of which conferred protection against neuroadapted Sindbis virus infection in mice. We describe here further development of this series, resulting in 10-fold improvement in potency in a WEEV replicon assay and up to 40-fold increases in half-lives in mouse liver microsomes. Using a rhodamine123 uptake assay in MDR1-MDCKII cells, we were able to identify structural modifications that markedly reduce recognition by P-glycoprotein, the key efflux transporter at the blood-brain barrier. In a preliminary mouse PK study, we were able to demonstrate that two new analogues could achieve higher and/or longer plasma drug exposures than our previous lead and that one compound achieved measurable drug levels in the brain.

Research paper thumbnail of A Profile of Differentially Abundant Proteins at the Yeast Cell Periphery during Pseudohyphal Growth

Journal of Biological Chemistry, 2010

Yeast filamentous growth is a stress response to conditions of nitrogen deprivation, wherein yeas... more Yeast filamentous growth is a stress response to conditions of nitrogen deprivation, wherein yeast colonies form pseudohyphal filaments of elongated and connected cells. As proteins mediating adhesion and transport are required for this growth transition, we expect that the protein complement at the yeast cell periphery plays a critical and tightly regulated role in pseudohyphal filamentation. To identify proteins differentially abundant at the yeast cell periphery during pseudohyphal growth, we generated quantitative proteomic profiles of plasma membrane protein preparations under conditions of vegetative growth and filamentation. By isobaric tags for relative and absolute quantification chemistry and two-dimensional liquid chromatography-tandem mass spectrometry, we profiled 2463 peptides and 356 proteins, identifying 11 differentially abundant proteins that localize to the yeast cell periphery. This protein set includes Ylr414cp, herein renamed Pun1p, a previously uncharacterized protein localized to the plasma membrane compartment of Can1. Pun1p abundance is doubled under conditions of nitrogen stress, and deletion of PUN1 abolishes filamentous growth in haploids and diploids; pun1Delta mutants are noninvasive, lack surface-spread filamentation, grow slowly, and exhibit impaired cell adhesion. Conversely, overexpression of PUN1 results in exaggerated cell elongation under conditions of nitrogen stress. PUN1 contributes to yeast nitrogen signaling, as pun1Delta mutants misregulate amino acid biosynthetic genes during nitrogen stress. By chromatin immunoprecipitation and reverse transcription-PCR, we find that the filamentous growth factor Mss11p directly binds the PUN1 promoter and regulates its transcription. In total, this study provides the first profile of differential protein abundance during pseudohyphal growth, identifying a previously uncharacterized membrane compartment of Can1 protein required for wild-type nitrogen signaling and filamentous growth.

Research paper thumbnail of Transcribed dinucleotide repeat polymorphism in the IGF2 gene

Human Molecular Genetics, 1994

Research paper thumbnail of Genetic Networks Inducing Invasive Growth in Saccharomyces cerevisiae Identified Through Systematic Genome-Wide Overexpression

Genetics, 2013

The budding yeast Saccharomyces cerevisiae can respond to nutritional and environmental stress by... more The budding yeast Saccharomyces cerevisiae can respond to nutritional and environmental stress by implementing a morphogenetic program wherein cells elongate and interconnect, forming pseudohyphal filaments. This growth transition has been studied extensively as a model signaling system with similarity to processes of hyphal development that are linked with virulence in related fungal pathogens. Classic studies have identified core pseudohyphal growth signaling modules in yeast; however, the scope of regulatory networks that control yeast filamentation is broad and incompletely defined. Here, we address the genetic basis of yeast pseudohyphal growth by implementing a systematic analysis of 4909 genes for overexpression phenotypes in a filamentous strain of S. cerevisiae. Our results identify 551 genes conferring exaggerated invasive growth upon overexpression under normal vegetative growth conditions. This cohort includes 79 genes lacking previous phenotypic characterization. Pathway enrichment analysis of the gene set identifies networks mediating mitogen-activated protein kinase (MAPK) signaling and cell cycle progression. In particular, overexpression screening suggests that nuclear export of the osmoresponsive MAPK Hog1p may enhance pseudohyphal growth. The function of nuclear Hog1p is unclear from previous studies, but our analysis using a nuclear-depleted form of Hog1p is consistent with a role for nuclear Hog1p in repressing pseudohyphal growth. Through epistasis and deletion studies, we also identified genetic relationships with the G2 cyclin Clb2p and phenotypes in filamentation induced by S-phase arrest. In sum, this work presents a unique and informative resource toward understanding the breadth of genes and pathways that collectively constitute the molecular basis of filamentation.

Research paper thumbnail of Unconventional Genomic Architecture in the Budding Yeast Saccharomyces cerevisiae Masks the Nested Antisense Gene NAG1

Eukaryotic Cell, 2008

The genomic architecture of the budding yeast Saccharomyces cerevisiae is typical of other eukary... more The genomic architecture of the budding yeast Saccharomyces cerevisiae is typical of other eukaryotes in that genes are spatially organized into discrete and nonoverlapping units. Inherent in this organizational model is the assumption that protein-coding sequences do not overlap completely. Here, we present evidence to the contrary, defining a previously overlooked yeast gene, NAG1 (for nested antisense gene) nested entirely within the coding sequence of the YGR031W open reading frame in an antisense orientation on the opposite strand. NAG1 encodes a 19-kDa protein, detected by Western blotting of hemagglutinin (HA)-tagged Nag1p with anti-HA antibodies and by ␤-galactosidase analysis of a NAG1-lacZ fusion. NAG1 is evolutionarily conserved as a unit with YGR031W in bacteria and fungi. Unlike the YGR031WP protein product, however, which localizes to the mitochondria, Nag1p localizes to the cell periphery, exhibiting properties consistent with those of a plasma membrane protein. Phenotypic analysis of a site-directed mutant (nag1-1) disruptive for NAG1 but silent with respect to YGR031W, defines a role for NAG1 in yeast cell wall biogenesis; microarray profiling of nag1-1 indicates decreased expression of genes contributing to cell wall organization, and the nag1-1 mutant is hypersensitive to the cell wall-perturbing agent calcofluor white. Furthermore, production of Nag1p is dependent upon the presence of the cell wall integrity pathway mitogen-activated protein kinase Slt2p and its downstream transcription factor Rlm1p. Thus, NAG1 is important for two reasons. First, it contributes to yeast cell wall biogenesis. Second, its genomic context is novel, raising the possibility that other nested proteincoding genes may exist in eukaryotic genomes.