V. Sankarasubramanian | University of Michigan (original) (raw)

Papers by V. Sankarasubramanian

Research paper thumbnail of Models to Tailor Brain Stimulation Therapies in Stroke

Neural Plasticity, 2016

A great challenge facing stroke rehabilitation is the lack of information on how to derive target... more A great challenge facing stroke rehabilitation is the lack of information on how to derive targeted therapies. As such, techniques once considered promising, such as brain stimulation, have demonstrated mixed efficacy across heterogeneous samples in clinical studies. Here, we explain reasons, citing its one-type-suits-all approach as the primary cause of variable efficacy. We present evidence supporting the role of alternate substrates, which can be targeted instead in patients with greater damage and deficit. Building on this groundwork, this review will also discuss different frameworks on how to tailor brain stimulation therapies. To the best of our knowledge, our report is the first instance that enumerates and compares across theoretical models from upper limb recovery and conditions like aphasia and depression. Here, we explain how different models capture heterogeneity across patients and how they can be used to predict which patients would best respond to what treatments to develop targeted, individualized brain stimulation therapies. Our intent is to weigh pros and cons of testing each type of model so brain stimulation is successfully tailored to maximize upper limb recovery in stroke.

Research paper thumbnail of Performance of Transverse Tripoles vs. Longitudinal Tripoles With Anode Intensification (AI) in Spinal Cord Stimulation: Computational Modeling Study

Neuromodulation: Technology at the Neural Interface, 2014

Objective: In spinal cord stimulation, anodes tend to have a strong effect over the area of dorsa... more Objective: In spinal cord stimulation, anodes tend to have a strong effect over the area of dorsal column (DC) activation, when configured as both longitudinal guarded cathodes (LGCs) and transverse tripoles (TTs). Inclusion of a small spacing step (LGC+) in the center-center (CC) spacing of the LGC can be an efficient method to study the local effects around the electrode. The primary aim of this computer modeling study is to investigate if enhanced DC recruitment is achieved when anodal currents in TT and LGC combinations (both LGC and LGC+) are increased up to 30% with respect to the cathodal current. Secondly, the merits of anodal intensification (AI) are evaluated by comparing the DC recruitment areas (SRA) and energy consumption (EDT) of LGC+ with AI, against stimulation using an LGC without AI. Materials and Methods: The commercially available LGC and LGC+, with 4.0 and 4.5 mm CC , respectively, were modeled on a single percutaneous lead at the low-thoracic vertebral region (T10–T12). Transverse tripolar stimulation (TTS) was modeled on triple percutaneous leads. Results: TTS with 10% AI recruited a smaller SRA as compared with TTS with no AI. AI of LGC and LGC+ resulted in increasing SRAs respectively to that of LGC and LGC+ without AI. Also, AI of LGC+ recruited a larger SRA and usage range (UR) at lower EDT compared with that of LGC without AI. Conclusions: AI of TTS is not advantageous. LGC and LGC+ with AI allow additional DC stimulation, which may increase the likelihood of activating fibers inaccessible with conventional programming. LGC+ with AI can be more efficient than LGCs without AI, as a larger SRA and UR is achieved at lower EDT. Conflict of Interest: Drs. Buitenweg and Holsheimer were paid consultants for Boston Scientific Neuromodulation in 2009. The other authors reported no conflicts of interest.

Research paper thumbnail of Staggered Transverse Tripoles With Quadripolar Lateral Anodes Using Percutaneous and Surgical Leads in Spinal Cord Stimulation

Neurosurgery, 2013

BACKGROUND: In spinal cord stimulation for low-back pain, the use of electrode arrays with both l... more BACKGROUND:
In spinal cord stimulation for low-back pain, the use of electrode arrays with both low-power requirements and selective activation of target dorsal column (DC) fibers is desired. The aligned transverse tripolar lead configuration offers the best DC selectivity. Electrode alignment of the same configuration using 3 parallel percutaneous leads is possible, but compromised by longitudinal migration, resulting in loss of DC selectivity. This loss might be repaired by using the adjacent anodal contacts on the lateral leads.

OBJECTIVE:
To investigate if stimulation using adjacent anodal contacts on the lateral percutaneous leads of a staggered transverse tripole can restore DC selectivity.

METHODS:
Staggered transverse tripoles with quadripolar lateral anodes were modeled on the low-thoracic vertebral region (T10-T12) of the spinal cord using (a) percutaneous lead with staggered quadripolar lateral anodal configuration (PERC QD) and (b) laminotomy lead with staggered quadripolar lateral anodal configuration (LAM QD), of the same contact dimensions. The commercially available LAM 565 surgical lead with 16 widely spaced contacts was also modeled. For comparison with PERC QD, staggered transverse tripoles with dual lateral anodes were modeled by using percutaneous lead with staggered dual lateral anodal configuration (PERC ST).

RESULTS:
The PERC QD improved the depth of DC penetration and enabled selective recruitment of DCs in comparison with PERC ST. Mediolateral selectivity of DCs could not be achieved with the LAM 565.

CONCLUSION:
Stimulation using PERC QD improves anodal shielding of dorsal roots and restores DC selectivity. Based on our modeling study, we hypothesize that, in clinical practice, LAM QD can provide an improved performance compared with the PERC QD. Our model also predicts that the same configuration realized on the commercial LAM 565 surgical lead with widely spaced contacts cannot selectively stimulate DCs essential in treating low-back pain.

Research paper thumbnail of Electrode alignment of transverse tripoles using a percutaneous triple-lead approach in spinal cord stimulation Electrode alignment of transverse tripoles using a percutaneous triple-lead approach in spinal cord stimulation

Journal of Neural Engineering, 2011

The aim of this modeling study is to determine the influence of electrode alignment of transverse... more The aim of this modeling study is to determine the influence of electrode alignment of transverse tripoles on the paresthesia coverage of the pain area in spinal cord stimulation, using a percutaneous triple-lead approach. Transverse tripoles, comprising a central cathode and two lateral anodes, were modeled on the low-thoracic vertebral region (T10–T12) using percutaneous triple-lead configurations, with the center lead on the spinal cord midline. The triple leads were oriented both aligned and staggered. In the staggered configuration, the anodes were offset either caudally (caudally staggered) or rostrally (rostrally staggered) with respect to the midline cathode. The transverse tripolar field steering with the aligned and staggered configurations enabled the estimation of dorsal column fiber thresholds (I DC) and dorsal root fiber thresholds (I DR) at various anodal current ratios. I DC and I DR were considerably higher for the aligned transverse tripoles as compared to the staggered transverse tripoles. The aligned transverse tripoles facilitated deeper penetration into the medial dorsal columns (DCs). The staggered transverse tripoles always enabled broad and bilateral DC activation, at the expense of mediolateral steerability. The largest DC recruited area was obtained with the rostrally staggered transverse tripole. Transverse tripolar geometries, using percutaneous leads, allow for selective targeting of either medial or lateral DC fibers, if and only if the transverse tripole is aligned. Steering of anodal currents between the lateral leads of the staggered transverse tripoles cannot target medially confined populations of DC fibers in the spinal cord. An aligned transverse tripolar configuration is strongly recommended, because of its ability to provide more post-operative flexibility than other configurations.

Research paper thumbnail of Transcranial Direct Current Stimulation Targeting Primary Motor Versus Dorsolateral Prefrontal Cortices: Proof-of-Concept Study Investigating Functional Connectivity of Thalamocortical Networks Specific to Sensory-Affective Information Processing

Brain Connectivity, 2017

The pain matrix is comprised of an extensive network of brain structures involved in sensory and/... more The pain matrix is comprised of an extensive network of brain structures involved in sensory and/or affective information processing. The thalamus is a key structure constituting the pain matrix. The thalamus serves as a relay center receiving information from multiple ascending pathways and relating information to and from multiple cortical areas. However, it is unknown how thalamocortical networks specific to sensory-affective information processing are functionally integrated. Here, in a proof-of-concept study in healthy humans, we aimed to understand this connectivity using transcranial direct current stimulation (tDCS) targeting primary motor (M1) or dorsolateral prefrontal cortices (DLPFC). We compared changes in functional connectivity (FC) with DLPFC tDCS to changes in FC with M1 tDCS. FC changes were also compared to further investigate its relation with individual's baseline experience of pain. We hypothesized that resting-state FC would change based on tDCS location and would represent known thalamocortical networks. Ten right-handed individuals received a single application of anodal tDCS (1 mA, 20 min) to right M1 and DLPFC in a single-blind, sham-controlled crossover study. FC changes were studied between ventroposterolateral (VPL), the sensory nucleus of thalamus, and cortical areas involved in sensory information processing and between medial dorsal (MD), the affective nucleus, and cortical areas involved in affective information processing. Individual's perception of pain at baseline was assessed using cutaneous heat pain stimuli. We found that anodal M1 tDCS and anodal DLPFC tDCS both increased FC between VPL and sensorimotor cortices, although FC effects were greater with M1 tDCS. Similarly, anodal M1 tDCS and anodal DLPFC tDCS both increased FC between MD and motor cortices, but only DLPFC tDCS modulated FC between MD and affective cortices, like DLPFC. Our findings suggest that M1 stimulation primarily modulates FC of sensory networks, whereas DLPFC stimulation modulates FC of both sensory and affective networks. Our findings when replicated in a larger group of individuals could provide useful evidence that may inform future studies on pain to differentiate between effects of M1 and DLPFC stimulation. Notably, our finding that individuals with high baseline pain thresholds experience greater FC changes with DLPFC tDCS implies the role of DLPFC in pain modulation, particularly pain tolerance.

Research paper thumbnail of Reproducibility of transcranial magnetic stimulation metrics in the study of proximal upper limb muscles

Journal of Electromyography and Kinesiology, 2015

Objective: Reproducibility of transcranial magnetic stimulation (TMS) metrics is essential in acc... more Objective: Reproducibility of transcranial magnetic stimulation (TMS) metrics is essential in accurately tracking recovery and disease. However, majority of evidence pertains to reproducibility of metrics for distal upper limb muscles. We investigate for the first time, reliability of corticospinal physiology for a large proximal muscle – the biceps brachii and relate how varying statistical analyses can influence interpretations. Methods: 14 young right-handed healthy participants completed two sessions assessing resting motor threshold (RMT), motor evoked potentials (MEPs), motor map and intra-cortical inhibition (ICI) from the left biceps brachii. Analyses included paired t-tests, Pearson's, intra-class (ICC) and concordance correlation coefficients (CCC) and Bland–Altman plots. Results: Unlike paired t-tests, ICC, CCC and Pearson's were >0.6 indicating good reliability for RMTs, MEP intensities and locations of map; however values were <0.3 for MEP responses and ICI. Conclusions: Corticospinal physiology, defining excitability and output in terms of intensity of the TMS device, and spatial loci are the most reliable metrics for the biceps. MEPs and variables based on MEPs are less reliable since biceps receives fewer cortico-motor-neuronal projections. Statistical tests of agreement and associations are more powerful reliability indices than inferential tests. Significance: Reliable metrics of proximal muscles when translated to a larger number of participants would serve to sensitively track and prognosticate function in neurological disorders such as stroke where proximal recovery precedes distal.

Research paper thumbnail of Inhibition versus facilitation of contralesional motor cortices in stroke: Deriving a model to tailor brain stimulation

Clinical Neurophysiology, 2017

OBJECTIVE: The standard approach to brain stimulation in stroke is based on the premise that ipsi... more OBJECTIVE:
The standard approach to brain stimulation in stroke is based on the premise that ipsilesional M1 (iM1) is important for motor function of the paretic upper limb, while contralesional cortices compete with iM1. Therefore, the approach typically advocates facilitating iM1 and/or inhibiting contralesional M1 (cM1). But, this approach fails to elicit much improvement in severely affected patients, who on account of extensive damage to ipsilesional pathways, cannot rely on iM1. These patients are believed to instead rely on the undamaged cortices, especially the contralesional dorsal premotor cortex (cPMd), for support of function of the paretic limb. Here, we tested for the first time whether facilitation of cPMd could improve paretic limb function in severely affected patients, and if a cut-off could be identified to separate responders to cPMd from responders to the standard approach to stimulation.

METHODS:
In a randomized, sham-controlled crossover study, fifteen patients received the standard approach of stimulation involving inhibition of cM1 and a new approach involving facilitation of cPMd using repetitive transcranial magnetic stimulation (rTMS). Patients also received rTMS to control areas. At baseline, impairment [Upper Extremity Fugl-Meyer (UEFMPROXIMAL, max=36)] and damage to pathways [fractional anisotropy (FA)] was measured. We measured changes in time to perform proximal paretic limb reaching, and neurophysiology using TMS.

RESULTS:
Facilitation of cPMd generated more improvement in severely affected patients, who had experienced greater damage and impairment than a cut-off value of FA (0.5) and UEFMPROXIMAL (26-28). The standard approach instead generated more improvement in mildly affected patients. Responders to cPMd showed alleviation of interhemispheric competition imposed on iM1, while responders to the standard approach showed gains in ipsilesional excitability in association with improvement.

CONCLUSIONS:
A preliminary cut-off level of severity separated responders for standard approach vs. facilitation of cPMd.

SIGNIFICANCE:
Cut-offs identified here could help select candidates for tailored stimulation in future studies so patients in all ranges of severity could potentially achieve maximum benefit in function of the paretic upper limb.

Research paper thumbnail of Neuromodulation: Technology at the Neural Interface Objective Measures to Characterize the Physiological Effects of Spinal Cord Stimulation in Neuropathic Pain: A Literature Review

Neuromodulation: Technology at the Neural Interface, 2018

Objective: The physiological mechanisms behind the therapeutic effects of spinal cord stimulation... more Objective: The physiological mechanisms behind the therapeutic effects of spinal cord stimulation (SCS) are only partially understood. Our aim was to perform a literature review of studies that used objective measures to characterize mechanisms of action of SCS in neuropathic pain patients. Materials and Methods: We searched the PubMed data base to identify clinical studies that used objective measures to assess the effects of SCS in neuropathic pain. We extracted the study factors (e.g., type of measure, diagnoses, painful area[s], and SCS parameters) and outcomes from the included studies. Results: We included 67 studies. Of these, 24 studies used neurophysiological measures, 14 studies used functional neuroim-aging techniques, three studies used a combination of neurophysiological and functional neuroimaging techniques, 14 studies used quantitative sensory testing, and 12 studies used proteomic, vascular, and/or pedometric measures. Our findings suggest that SCS largely inhibits somatosensory processing and/or spinal nociceptive activity. Our findings also suggest that SCS modulates activity across specific regions of the central nervous system that play a prominent role in the sensory and emotional functions of pain. Conclusions: SCS appears to modulate pain via spinal and/or supraspinal mechanisms of action (e.g., pain gating, descending pain inhibition). However, to better understand the mechanisms of action of SCS, we believe that it is necessary to carry out systematic, controlled, and well-powered studies using objective patient measures. To optimize the clinical effectiveness of SCS for neuropathic pain, we also believe that it is necessary to develop and implement patient-specific approaches.

Research paper thumbnail of Triple leads programmed to perform as longitudinal guarded cathodes in spinal cord stimulation: a modeling study

Neuromodulation: Technology at the Neural Interface, 2011

OBJECTIVE: In spinal cord stimulation, neurosurgeons increasingly tend to implant dual leads. D... more OBJECTIVE:
In spinal cord stimulation, neurosurgeons increasingly tend to implant dual leads. Dual leads (longitudinal bipole/tripole) provide medio-lateral control over the recruited dorsal column (DC) area by steering the injected cathodal currents. However, the DC recruited area is suboptimal when dual aligned leads straddling the midline programmed as longitudinal guarded cathodes (+-+) are used instead of a single lead placed over the spinal cord midline with the same configuration. As a potential improvement, an additional third lead between the two aligned leads is modeled to maximize the medio-lateral extent of the DCs at the low-thoracic vertebral region (T10-T12).

METHODS AND MATERIALS:
The University of Twente Spinal Cord Stimulation software (UT-SCS) is used in this modeling study. Longitudinal guarded cathodes were modeled on the low-thoracic vertebral region (T10-T12) using percutaneous triple lead configurations. The central lead was modeled over the spinal cord midline and the two lateral leads were modeled at several transverse distances to the midline lead. Medio-lateral field steering was performed with the midline lead and the second lead on each side to achieve constant anodal current ratios and variable anodal current ratios.

RESULTS:
Reducing the transverse lead separation resulted in increasing the depths and widths of the recruited DC area. The triple lead configuration with the least transverse separation had the largest DC recruited area and usage range. The maximum DC recruited area (in terms of both depth and width) was always found to be larger under variable anodal current ratio than constant anodal current ratio conditions.

CONCLUSIONS:
Triple leads programmed to perform as longitudinal guarded cathodes provide more postoperative flexibility than single and dual leads in covering a larger width of the low-thoracic DCs. The transverse separation between the leads is a major determinant of the area and distribution of paresthesia.

Research paper thumbnail of Models to Tailor Brain Stimulation Therapies in Stroke

Neural Plasticity, 2016

A great challenge facing stroke rehabilitation is the lack of information on how to derive target... more A great challenge facing stroke rehabilitation is the lack of information on how to derive targeted therapies. As such, techniques once considered promising, such as brain stimulation, have demonstrated mixed efficacy across heterogeneous samples in clinical studies. Here, we explain reasons, citing its one-type-suits-all approach as the primary cause of variable efficacy. We present evidence supporting the role of alternate substrates, which can be targeted instead in patients with greater damage and deficit. Building on this groundwork, this review will also discuss different frameworks on how to tailor brain stimulation therapies. To the best of our knowledge, our report is the first instance that enumerates and compares across theoretical models from upper limb recovery and conditions like aphasia and depression. Here, we explain how different models capture heterogeneity across patients and how they can be used to predict which patients would best respond to what treatments to develop targeted, individualized brain stimulation therapies. Our intent is to weigh pros and cons of testing each type of model so brain stimulation is successfully tailored to maximize upper limb recovery in stroke.

Research paper thumbnail of Performance of Transverse Tripoles vs. Longitudinal Tripoles With Anode Intensification (AI) in Spinal Cord Stimulation: Computational Modeling Study

Neuromodulation: Technology at the Neural Interface, 2014

Objective: In spinal cord stimulation, anodes tend to have a strong effect over the area of dorsa... more Objective: In spinal cord stimulation, anodes tend to have a strong effect over the area of dorsal column (DC) activation, when configured as both longitudinal guarded cathodes (LGCs) and transverse tripoles (TTs). Inclusion of a small spacing step (LGC+) in the center-center (CC) spacing of the LGC can be an efficient method to study the local effects around the electrode. The primary aim of this computer modeling study is to investigate if enhanced DC recruitment is achieved when anodal currents in TT and LGC combinations (both LGC and LGC+) are increased up to 30% with respect to the cathodal current. Secondly, the merits of anodal intensification (AI) are evaluated by comparing the DC recruitment areas (SRA) and energy consumption (EDT) of LGC+ with AI, against stimulation using an LGC without AI. Materials and Methods: The commercially available LGC and LGC+, with 4.0 and 4.5 mm CC , respectively, were modeled on a single percutaneous lead at the low-thoracic vertebral region (T10–T12). Transverse tripolar stimulation (TTS) was modeled on triple percutaneous leads. Results: TTS with 10% AI recruited a smaller SRA as compared with TTS with no AI. AI of LGC and LGC+ resulted in increasing SRAs respectively to that of LGC and LGC+ without AI. Also, AI of LGC+ recruited a larger SRA and usage range (UR) at lower EDT compared with that of LGC without AI. Conclusions: AI of TTS is not advantageous. LGC and LGC+ with AI allow additional DC stimulation, which may increase the likelihood of activating fibers inaccessible with conventional programming. LGC+ with AI can be more efficient than LGCs without AI, as a larger SRA and UR is achieved at lower EDT. Conflict of Interest: Drs. Buitenweg and Holsheimer were paid consultants for Boston Scientific Neuromodulation in 2009. The other authors reported no conflicts of interest.

Research paper thumbnail of Staggered Transverse Tripoles With Quadripolar Lateral Anodes Using Percutaneous and Surgical Leads in Spinal Cord Stimulation

Neurosurgery, 2013

BACKGROUND: In spinal cord stimulation for low-back pain, the use of electrode arrays with both l... more BACKGROUND:
In spinal cord stimulation for low-back pain, the use of electrode arrays with both low-power requirements and selective activation of target dorsal column (DC) fibers is desired. The aligned transverse tripolar lead configuration offers the best DC selectivity. Electrode alignment of the same configuration using 3 parallel percutaneous leads is possible, but compromised by longitudinal migration, resulting in loss of DC selectivity. This loss might be repaired by using the adjacent anodal contacts on the lateral leads.

OBJECTIVE:
To investigate if stimulation using adjacent anodal contacts on the lateral percutaneous leads of a staggered transverse tripole can restore DC selectivity.

METHODS:
Staggered transverse tripoles with quadripolar lateral anodes were modeled on the low-thoracic vertebral region (T10-T12) of the spinal cord using (a) percutaneous lead with staggered quadripolar lateral anodal configuration (PERC QD) and (b) laminotomy lead with staggered quadripolar lateral anodal configuration (LAM QD), of the same contact dimensions. The commercially available LAM 565 surgical lead with 16 widely spaced contacts was also modeled. For comparison with PERC QD, staggered transverse tripoles with dual lateral anodes were modeled by using percutaneous lead with staggered dual lateral anodal configuration (PERC ST).

RESULTS:
The PERC QD improved the depth of DC penetration and enabled selective recruitment of DCs in comparison with PERC ST. Mediolateral selectivity of DCs could not be achieved with the LAM 565.

CONCLUSION:
Stimulation using PERC QD improves anodal shielding of dorsal roots and restores DC selectivity. Based on our modeling study, we hypothesize that, in clinical practice, LAM QD can provide an improved performance compared with the PERC QD. Our model also predicts that the same configuration realized on the commercial LAM 565 surgical lead with widely spaced contacts cannot selectively stimulate DCs essential in treating low-back pain.

Research paper thumbnail of Electrode alignment of transverse tripoles using a percutaneous triple-lead approach in spinal cord stimulation Electrode alignment of transverse tripoles using a percutaneous triple-lead approach in spinal cord stimulation

Journal of Neural Engineering, 2011

The aim of this modeling study is to determine the influence of electrode alignment of transverse... more The aim of this modeling study is to determine the influence of electrode alignment of transverse tripoles on the paresthesia coverage of the pain area in spinal cord stimulation, using a percutaneous triple-lead approach. Transverse tripoles, comprising a central cathode and two lateral anodes, were modeled on the low-thoracic vertebral region (T10–T12) using percutaneous triple-lead configurations, with the center lead on the spinal cord midline. The triple leads were oriented both aligned and staggered. In the staggered configuration, the anodes were offset either caudally (caudally staggered) or rostrally (rostrally staggered) with respect to the midline cathode. The transverse tripolar field steering with the aligned and staggered configurations enabled the estimation of dorsal column fiber thresholds (I DC) and dorsal root fiber thresholds (I DR) at various anodal current ratios. I DC and I DR were considerably higher for the aligned transverse tripoles as compared to the staggered transverse tripoles. The aligned transverse tripoles facilitated deeper penetration into the medial dorsal columns (DCs). The staggered transverse tripoles always enabled broad and bilateral DC activation, at the expense of mediolateral steerability. The largest DC recruited area was obtained with the rostrally staggered transverse tripole. Transverse tripolar geometries, using percutaneous leads, allow for selective targeting of either medial or lateral DC fibers, if and only if the transverse tripole is aligned. Steering of anodal currents between the lateral leads of the staggered transverse tripoles cannot target medially confined populations of DC fibers in the spinal cord. An aligned transverse tripolar configuration is strongly recommended, because of its ability to provide more post-operative flexibility than other configurations.

Research paper thumbnail of Transcranial Direct Current Stimulation Targeting Primary Motor Versus Dorsolateral Prefrontal Cortices: Proof-of-Concept Study Investigating Functional Connectivity of Thalamocortical Networks Specific to Sensory-Affective Information Processing

Brain Connectivity, 2017

The pain matrix is comprised of an extensive network of brain structures involved in sensory and/... more The pain matrix is comprised of an extensive network of brain structures involved in sensory and/or affective information processing. The thalamus is a key structure constituting the pain matrix. The thalamus serves as a relay center receiving information from multiple ascending pathways and relating information to and from multiple cortical areas. However, it is unknown how thalamocortical networks specific to sensory-affective information processing are functionally integrated. Here, in a proof-of-concept study in healthy humans, we aimed to understand this connectivity using transcranial direct current stimulation (tDCS) targeting primary motor (M1) or dorsolateral prefrontal cortices (DLPFC). We compared changes in functional connectivity (FC) with DLPFC tDCS to changes in FC with M1 tDCS. FC changes were also compared to further investigate its relation with individual's baseline experience of pain. We hypothesized that resting-state FC would change based on tDCS location and would represent known thalamocortical networks. Ten right-handed individuals received a single application of anodal tDCS (1 mA, 20 min) to right M1 and DLPFC in a single-blind, sham-controlled crossover study. FC changes were studied between ventroposterolateral (VPL), the sensory nucleus of thalamus, and cortical areas involved in sensory information processing and between medial dorsal (MD), the affective nucleus, and cortical areas involved in affective information processing. Individual's perception of pain at baseline was assessed using cutaneous heat pain stimuli. We found that anodal M1 tDCS and anodal DLPFC tDCS both increased FC between VPL and sensorimotor cortices, although FC effects were greater with M1 tDCS. Similarly, anodal M1 tDCS and anodal DLPFC tDCS both increased FC between MD and motor cortices, but only DLPFC tDCS modulated FC between MD and affective cortices, like DLPFC. Our findings suggest that M1 stimulation primarily modulates FC of sensory networks, whereas DLPFC stimulation modulates FC of both sensory and affective networks. Our findings when replicated in a larger group of individuals could provide useful evidence that may inform future studies on pain to differentiate between effects of M1 and DLPFC stimulation. Notably, our finding that individuals with high baseline pain thresholds experience greater FC changes with DLPFC tDCS implies the role of DLPFC in pain modulation, particularly pain tolerance.

Research paper thumbnail of Reproducibility of transcranial magnetic stimulation metrics in the study of proximal upper limb muscles

Journal of Electromyography and Kinesiology, 2015

Objective: Reproducibility of transcranial magnetic stimulation (TMS) metrics is essential in acc... more Objective: Reproducibility of transcranial magnetic stimulation (TMS) metrics is essential in accurately tracking recovery and disease. However, majority of evidence pertains to reproducibility of metrics for distal upper limb muscles. We investigate for the first time, reliability of corticospinal physiology for a large proximal muscle – the biceps brachii and relate how varying statistical analyses can influence interpretations. Methods: 14 young right-handed healthy participants completed two sessions assessing resting motor threshold (RMT), motor evoked potentials (MEPs), motor map and intra-cortical inhibition (ICI) from the left biceps brachii. Analyses included paired t-tests, Pearson's, intra-class (ICC) and concordance correlation coefficients (CCC) and Bland–Altman plots. Results: Unlike paired t-tests, ICC, CCC and Pearson's were >0.6 indicating good reliability for RMTs, MEP intensities and locations of map; however values were <0.3 for MEP responses and ICI. Conclusions: Corticospinal physiology, defining excitability and output in terms of intensity of the TMS device, and spatial loci are the most reliable metrics for the biceps. MEPs and variables based on MEPs are less reliable since biceps receives fewer cortico-motor-neuronal projections. Statistical tests of agreement and associations are more powerful reliability indices than inferential tests. Significance: Reliable metrics of proximal muscles when translated to a larger number of participants would serve to sensitively track and prognosticate function in neurological disorders such as stroke where proximal recovery precedes distal.

Research paper thumbnail of Inhibition versus facilitation of contralesional motor cortices in stroke: Deriving a model to tailor brain stimulation

Clinical Neurophysiology, 2017

OBJECTIVE: The standard approach to brain stimulation in stroke is based on the premise that ipsi... more OBJECTIVE:
The standard approach to brain stimulation in stroke is based on the premise that ipsilesional M1 (iM1) is important for motor function of the paretic upper limb, while contralesional cortices compete with iM1. Therefore, the approach typically advocates facilitating iM1 and/or inhibiting contralesional M1 (cM1). But, this approach fails to elicit much improvement in severely affected patients, who on account of extensive damage to ipsilesional pathways, cannot rely on iM1. These patients are believed to instead rely on the undamaged cortices, especially the contralesional dorsal premotor cortex (cPMd), for support of function of the paretic limb. Here, we tested for the first time whether facilitation of cPMd could improve paretic limb function in severely affected patients, and if a cut-off could be identified to separate responders to cPMd from responders to the standard approach to stimulation.

METHODS:
In a randomized, sham-controlled crossover study, fifteen patients received the standard approach of stimulation involving inhibition of cM1 and a new approach involving facilitation of cPMd using repetitive transcranial magnetic stimulation (rTMS). Patients also received rTMS to control areas. At baseline, impairment [Upper Extremity Fugl-Meyer (UEFMPROXIMAL, max=36)] and damage to pathways [fractional anisotropy (FA)] was measured. We measured changes in time to perform proximal paretic limb reaching, and neurophysiology using TMS.

RESULTS:
Facilitation of cPMd generated more improvement in severely affected patients, who had experienced greater damage and impairment than a cut-off value of FA (0.5) and UEFMPROXIMAL (26-28). The standard approach instead generated more improvement in mildly affected patients. Responders to cPMd showed alleviation of interhemispheric competition imposed on iM1, while responders to the standard approach showed gains in ipsilesional excitability in association with improvement.

CONCLUSIONS:
A preliminary cut-off level of severity separated responders for standard approach vs. facilitation of cPMd.

SIGNIFICANCE:
Cut-offs identified here could help select candidates for tailored stimulation in future studies so patients in all ranges of severity could potentially achieve maximum benefit in function of the paretic upper limb.

Research paper thumbnail of Neuromodulation: Technology at the Neural Interface Objective Measures to Characterize the Physiological Effects of Spinal Cord Stimulation in Neuropathic Pain: A Literature Review

Neuromodulation: Technology at the Neural Interface, 2018

Objective: The physiological mechanisms behind the therapeutic effects of spinal cord stimulation... more Objective: The physiological mechanisms behind the therapeutic effects of spinal cord stimulation (SCS) are only partially understood. Our aim was to perform a literature review of studies that used objective measures to characterize mechanisms of action of SCS in neuropathic pain patients. Materials and Methods: We searched the PubMed data base to identify clinical studies that used objective measures to assess the effects of SCS in neuropathic pain. We extracted the study factors (e.g., type of measure, diagnoses, painful area[s], and SCS parameters) and outcomes from the included studies. Results: We included 67 studies. Of these, 24 studies used neurophysiological measures, 14 studies used functional neuroim-aging techniques, three studies used a combination of neurophysiological and functional neuroimaging techniques, 14 studies used quantitative sensory testing, and 12 studies used proteomic, vascular, and/or pedometric measures. Our findings suggest that SCS largely inhibits somatosensory processing and/or spinal nociceptive activity. Our findings also suggest that SCS modulates activity across specific regions of the central nervous system that play a prominent role in the sensory and emotional functions of pain. Conclusions: SCS appears to modulate pain via spinal and/or supraspinal mechanisms of action (e.g., pain gating, descending pain inhibition). However, to better understand the mechanisms of action of SCS, we believe that it is necessary to carry out systematic, controlled, and well-powered studies using objective patient measures. To optimize the clinical effectiveness of SCS for neuropathic pain, we also believe that it is necessary to develop and implement patient-specific approaches.

Research paper thumbnail of Triple leads programmed to perform as longitudinal guarded cathodes in spinal cord stimulation: a modeling study

Neuromodulation: Technology at the Neural Interface, 2011

OBJECTIVE: In spinal cord stimulation, neurosurgeons increasingly tend to implant dual leads. D... more OBJECTIVE:
In spinal cord stimulation, neurosurgeons increasingly tend to implant dual leads. Dual leads (longitudinal bipole/tripole) provide medio-lateral control over the recruited dorsal column (DC) area by steering the injected cathodal currents. However, the DC recruited area is suboptimal when dual aligned leads straddling the midline programmed as longitudinal guarded cathodes (+-+) are used instead of a single lead placed over the spinal cord midline with the same configuration. As a potential improvement, an additional third lead between the two aligned leads is modeled to maximize the medio-lateral extent of the DCs at the low-thoracic vertebral region (T10-T12).

METHODS AND MATERIALS:
The University of Twente Spinal Cord Stimulation software (UT-SCS) is used in this modeling study. Longitudinal guarded cathodes were modeled on the low-thoracic vertebral region (T10-T12) using percutaneous triple lead configurations. The central lead was modeled over the spinal cord midline and the two lateral leads were modeled at several transverse distances to the midline lead. Medio-lateral field steering was performed with the midline lead and the second lead on each side to achieve constant anodal current ratios and variable anodal current ratios.

RESULTS:
Reducing the transverse lead separation resulted in increasing the depths and widths of the recruited DC area. The triple lead configuration with the least transverse separation had the largest DC recruited area and usage range. The maximum DC recruited area (in terms of both depth and width) was always found to be larger under variable anodal current ratio than constant anodal current ratio conditions.

CONCLUSIONS:
Triple leads programmed to perform as longitudinal guarded cathodes provide more postoperative flexibility than single and dual leads in covering a larger width of the low-thoracic DCs. The transverse separation between the leads is a major determinant of the area and distribution of paresthesia.