Helen Willcockson | University of North Carolina at Chapel Hill (original) (raw)
Papers by Helen Willcockson
Journal of Comparative Neurology, 1987
Several lines of evidence indicate that the processing of somatosensory information in the dorsal... more Several lines of evidence indicate that the processing of somatosensory information in the dorsal column nuclei (DCN) is subject to descending controls. Anatomical experiments have demonstrated projections to the DCN from the sensorimotor cerebral cortex and the reticular formation. Physiological studies have shown that the activity of DCN neurons can be altered following stimulation of the cerebral cortex, reticular formation, periaqueductal gray, or raphe nuclei. Recent biochemical and electrophysiological evidence suggests a serotoninergic modulation of DCN neurons. The present study identifies serotonin-containing contacts on cells in the DCN that project to the thalamus in the rat. Retrograde labeling of brainstem neurons by horseradish peroxidase demonstrated projections to the DCN from the nucleus reticularis paragigantocellularis lateralis and from several raphe nuclei, including nuclei raphe obscurus (RO), pallidus (RP), and magnus (RM). Double labeling with horseradish peroxidase and antibody for serotonin indicated that the RO, RP and RM are likely to be the sources of the serotoninergic projections to the DCN. Thus, the role of the serotoninergic output from the raphe nuclei includes modulation of activity in the DCN.
Journal of Comparative Neurology, 1990
In the present study, serotoninergic and noradrenergic varicosities were identified in the ventra... more In the present study, serotoninergic and noradrenergic varicosities were identified in the ventral posterolateral nucleus of the macaque monkey. Monoaminergic neurons projecting to the ventral posterolateral nucleus of the thalamus were identified by using retrograde labeling with horseradish peroxidase combined with immunocytochemical staining for serotonin or dopamine-6-hydroxylase. The midbrain nucleus raphe dorsalis was the major site of origin for neurons providing a serotoninergic projection to the ventral posterolateral nucleus. A few retrogradely labeled serotonin-containing neurons were also observed in the central superior and the raphe pontis nuclei. Noradrenergic cells with projections to the thalamus were primarily located in the nucleus locus coeruleus with some projection neurons in the nucleus subcoeruleus, and the A5 catecholamine cell group of the pons.
Somatosensory and Motor Research, 1995
Stimulation of peripheral nerves activates the proto-oncogene c-fos, which in turn generates its ... more Stimulation of peripheral nerves activates the proto-oncogene c-fos, which in turn generates its gene product, Fos. Fos and Fos-like proteins are produced in the central nervous system in response to chemical, mechanical, thermal, and electrical manipulation. The present study demonstrated a relationship between the number of Fos-like-immunoreactive nuclei in the spinal dorsal horn and graded intensities of electrical stimulation applied to the hindpaws of anesthetized and unanesthetized rats. Stimulation levels within the range of 0.1 to 1.0 mA were chosen on the basis of parmeters previously determined in behavioral investigations of escape reactions. Focal stimulation at these intensities activates peripheral axons directly, but does not injure or traumatize peripheral tissues. There was no evidence of inflammation or edema as a result of the focal electrical stimulation. As the stimulation intensity increased, the number and distribution of Fos-like-labeled nuclei increased with respect to rostral-caudal and laminar orientation. The threshold for expression of Fos-like immunoreactivity was different for anesthetized and unanesthetized animals. For anesthetized animals, the number of labeled nuclei increased significantly from the control level only when 1.0 mA was applied. However, in unanesthetized animals, the pattern of labeling was statistically significant at 0.2 mA. The present study demonstrates that electrical stimulation can evoke the expression of Fos-like immunoreactivity by activating nociceptors in the absence of tissue injury, and that the use of anesthetics can modulate this expression.
Somatosensory and Motor Research, 1995
Pain, 1999
We have previously shown that Fos-like immunoreactivity (Fos-LI) is evoked in the brainstem of fe... more We have previously shown that Fos-like immunoreactivity (Fos-LI) is evoked in the brainstem of ferrets following stimulation of pulpal Ad and C ®bers originating from the maxillary canine. This study evaluated the effects of the m-opioid receptor agonist fentanyl on Fos expression evoked by noxious thermal stimulation of the right maxillary and mandibular canines in pentobarbital/chloral hydrate anesthetized adult male ferrets. Pulpal heating evoked Fos expression in two distinct regions of the spinal trigeminal nuclear complex: the transitional region between subnucleus interpolaris and caudalis (Vi/Vc) and within the subnucleus caudalis (Vc). More Fos positive cells were expressed in both regions ipsilateral to the site of stimulation compared with the contralateral side (P , 0:05, ANOVA). Pretreatment with fentanyl signi®cantly and dose-dependently suppressed the number of Fos positive cells in both the Vi/Vc transitional region and Vc (P , 0:05, ANOVA). The suppressive effect of fentanyl on Fos expression was blocked by the intravenous administration of naloxone, an opioid antagonist, indicating a speci®c opioid receptor effect. In addition, opioid receptor antagonism with naloxone alone enhanced Fos expression in Vi/Vc and Vc in response to heat stimulation. The administration of naloxone without heat stimulation failed to evoke Fos expression in Vi/ Vc and Vc. These ®ndings suggest that the activation of trigeminal Vi/Vc and Vc neurons by noxious dental heat stimulation is controlled by a naloxone sensitive endogenous opioid system as indicated by Fos expression. Collectively, these results suggest that neuronal populations in Vi/Vc and Vc regions may contribute to pain responses to noxious dental stimulation and these responses can be modulated by both endogenous and exogenous opioids. q 1999 International Association for the Study of PAIN. Published by Elsevier Science B.V.
Neuroscience Letters, 2001
In our laboratory, preliminary whole-cell, tight seal recordings of rat spinal substantia gelatin... more In our laboratory, preliminary whole-cell, tight seal recordings of rat spinal substantia gelatinosa neurons including biocytin in the patch pipette yielded a signi®cantly smaller proportion of neurons hyperpolarized by selective opioid agonists compared with recordings without biocytin. Therefore, we investigated the effects of biocytin inclusion on opioid responses and other membrane properties during whole-cell, tight seal recordings of these neurons. The percentage of neurons hyperpolarized by m-, d 1 -, and k-selective opioids was signi®cantly reduced when 1% but not #0.2% biocytin was included in the recording pipette, compared with neurons recorded without biocytin. However, a signi®cantly higher proportion of neurons ®red spontaneous action potentials with either 0.05±0.2 or 1% biocytin compared to no biocytin. Resting membrane potential, input impedance and the proportion of neurons displaying transient outward recti®cation were each signi®cantly altered for neurons recorded with 1% but not 0.05±0.2% biocytin. These effects may be due to a relatively speci®c blockade of diverse potassium channel types. Because ef®cient labeling can be achieved with 0.1% biocytin with whole-cell recording, higher concentrations are contraindicated. q
Journal of Pain, 2004
Previous studies in our laboratory have shown that long-term (a period of weeks) increases in pai... more Previous studies in our laboratory have shown that long-term (a period of weeks) increases in pain-related behavior were correlated with the activation of spinal microglia after subcutaneous injection of formalin into the dorsal surface of 1 hind paw. The present study examined whether intrathecal delivery of suramin (a P2 receptor antagonist) blocks microglia activation and long-term hyperalgesia induced by formalin injection. Suramin was administered by using an osmotic pump attached to an intrathecal catheter. Suramin delivery (1.25 microg/kg/h) began 1 day before the formalin injection and lasted for 4 days. Rats were observed by using a modified hot plate test before and at different times after formalin injection. The spinal cord was surveyed for changes in microglia labeling as shown by OX-42 staining at different times after formalin injection. Suramin decreased both the hyperalgesic sensitivity to the thermal stimuli and microglial activation induced by formalin injection as compared to the saline-treated group. This suggests that adenosine triphosphate is one potential mediator that activates spinal cord microglia and enhances pain-related behavior in the formalin model. This report suggests that blocking specific spinal P2 receptors might decrease the central enhancement of pain caused by peripheral injury and inflammation. One mechanism might be by blocking the activation of spinal microglia. Thus, P2 antagonists might have therapeutic usefulness in certain pain conditions.
Brain Research, 1992
C-los is a proto-oncogene that is expressed within some neurons following depolarization. The pro... more C-los is a proto-oncogene that is expressed within some neurons following depolarization. The protein product, los, has been proposed as an anatomical marker for neuronal activity following noxious peripheral stimulation. However, the literature on noxious-stimulus induced los expression contains several puzzling observations on the time course and laminar distribution of neuronal labeling within the spinal cord.
Experimental Neurology, 2009
Although activation of spinal glia has been implicated in the development of pathological pain, t... more Although activation of spinal glia has been implicated in the development of pathological pain, the mechanisms underlying glial activation are not fully understood. One such mechanism may be triggered by reaction to neuroactive substances released from central axons of sensory afferents. The vanilloid receptor TRPV1, a nonselective cation channel in nociceptive sensory afferents, mediates the release of neurotransmitters, such as glutamate and CGRP in the dorsal horn, which can subsequently activate glia. To test the hypothesis that activation of spinal glia is mediated, at least in part, by TRPV1, we studied the expression of markers for microglia (ionized calcium-binding adapter molecule 1, Iba1) and astrocytes (glial fibrillary acidic protein, GFAP) in the spinal cord of TRPV1 knockout mice (KO) vs. wild-type mice (WT) in models of acute (intraplantar capsaicin), inflammatory (adjuvant-induced arthritis, AIA), and neuropathic pain (partial sciatic nerve ligation, PSNL). We found that (i) naïve KO mice had denser immunostaining for both Iba1 and GFAP than naive WT mice; (ii) the immunostaining for Iba1 increased significantly in treated mice, compared to naïve mice, 3 days after capsaicin and 7-14 days after AIA or PSNL, and was significantly greater in WT than in KO mice 3 days after capsaicin, 7-14 days after AIA, and 7 days after PSNL; and iii) the immunostaining for GFAP increased significantly in treated mice, compared to naïve mice, 3 days after capsaicin and 14-21 days after AIA or PSNL, and was significantly greater in WT than in KO mice 14 days after AIA or PSNL. Our results suggest that TRPV1 plays a role in the activation of spinal glia in mice with nociceptive, inflammatory, and neuropathic pain.
Journal of Comparative Neurology, 2005
Ionotropic glutamate receptors (IGR), including NMDA, AMPA, and kainate receptors, are expressed ... more Ionotropic glutamate receptors (IGR), including NMDA, AMPA, and kainate receptors, are expressed in terminals with varied morphology in the superficial laminae (I–III) of the dorsal horn of the spinal cord. Some of these terminals can be identified as endings of primary afferents, whereas others establish symmetric synapses, suggesting that they may be γ-aminobutyric acid (GABA)-ergic. In the present study, we used confocal and electron microscopy of double immunostaining for GAD65, a marker for GABAergic terminals, and for subunits of IGRs to test directly whether IGRs are expressed in GABAergic terminals in laminae I–III of the dorsal horn. Although colocalization is hard to detect with confocal microscopy, electron microscopy reveals a substantial number of terminals immunoreactive for GAD65 also stained for IGRs. Among all GAD65-immunoreactive terminals counted, 37% express the NMDA receptor subunit NR1; 28% are immunopositive using an antibody for the GluR2/4 subunits of the AMPA receptor; and 20–35% are immunopositive using antibodies for the kainate receptor subunits GluR5, GluR6/7, KA1, or KA2. Terminals immunoreactive for IGR subunits and GAD65 establish symmetric synapses onto dendrites and perikarya and can be presynaptic to primary afferent terminals within both type 1 and type 2 synaptic glomeruli. Activation of presynaptic IGR may reduce neurotransmitter release. As autoreceptors in terminals of Aδ and C afferent fibers in laminae I–III, presynaptic IGRs may play a role in inhibiting nociception. As heteroreceptors in GABAergic terminals in the same laminae, on the other hand, presynaptic IGRs may have an opposite role and even contribute to central sensitization and hyperalgesia. J. Comp. Neurol. 486:169–178, 2005. © 2005 Wiley-Liss, Inc.
Neuropeptides, 2010
The neuropeptide Substance P (SP), expressed by nociceptive sensory afferents in joints, plays an... more The neuropeptide Substance P (SP), expressed by nociceptive sensory afferents in joints, plays an important role in the pathogenesis of arthritis. Capsaicin causes neurons in the dorsal root ganglia (DRG) to release SP from their central and peripheral axons, suggesting a functional link between SP and the capsaicin receptor, the transient receptor potential vanilloid 1 (TRPV1). The expression of both TRPV1 and SP have been reported to increase in several models of arthritis but the specific involvement of TRPV1expressing articular afferents that can release SP is not completely understood. We here wanted to ascertain whether the increase in the number of SP-positive primary afferents in arthritis may be affected by genetic deletion of TRPV1. For this, we used immunohistochemistry to quantify the expression of SP in primary afferent neurons in wild-type mice (WT) vs. TRPV1-knockout (KO) mice with adjuvant-induced arthritis (AIA). We found that the expression of SP in DRG (1) increased significantly over naïve level in both WT and KO mice 3 weeks after AIA, (2) was significantly higher in KO mice than in WT mice in naïve mice and 2-3 weeks after AIA, (3) was significantly higher on the side of AIA than on the contralateral, vehicle-injected side at all time points in WT mice, but not in KO mice, and (4) increased predominantly in small-size neurons in KO mice and in small-and medium-size neurons in WT mice. Since the size distribution of SP-positive DRG neurons in arthritic TRPV1-KO mice was not significantly different from that in naïve mice, we speculate that the increased expression of SP is unlikely to reflect recruitment of A-fiber primary afferents and that the higher expression of SP in KO mice may represent a plastic change to compensate for the missing receptor in a major sensory circuit.
Neuropeptides, 2008
The neuropeptide calcitonin gene-related peptide (CGRP), expressed by nociceptive sensory afferen... more The neuropeptide calcitonin gene-related peptide (CGRP), expressed by nociceptive sensory afferents in joints, is an important mediator in the pathogenesis of arthritis. Capsaicin causes neurons in the dorsal root ganglia (DRG) to release CGRP from their central and/or peripheral axons, suggesting a functional link between CGRP and the capsaicin receptor TRPV1. The expression of both TRPV1 and CGRP have been reported to increase in several models of arthritis but the specific involvement of TRPV1-expressing articular afferents that can release CGRP remains unclear. We here wanted to ascertain whether the increase in the number of CGRP-positive primary afferents during arthritis may be affected by genetic deletion of TRPV1. For this, we quantified the expression of CGRP in primary afferent neurons in DRG in wild type mice (WT) vs. TRPV1-KO mice with adjuvant-induced arthritis (AIA), using immunohistochemistry. We found that the fraction of DRG neurons that were immunopositive for CGRP 1) was higher in naïve TRPV1-KO mice than in naïve WT mice, 2) increased progressively 3-21 days after induction of AIA, and 3) this increase was bilateral but significantly greater on the CFA-injected side than on the IFA-injected side in TRPV1-KO mice. The increased expression of CGRP in AIA may reflect a phenotypic switch of primary afferents from non-peptidergic to peptidergic and the larger increase in TRPV1-KO mice may represent a plastic change to compensate for the missing receptor in a major sensory circuit.
Pain, 2006
Presynaptic ionotropic glutamate receptors are increasingly attributed a role in the modulation o... more Presynaptic ionotropic glutamate receptors are increasingly attributed a role in the modulation of sensory input at the first synapse of dorsal root ganglion (DRG) neurons in the spinal dorsal horn. Central terminals of DRG neurons express AMPA and NMDA receptors whose activation modulates the release of glutamate, the main transmitter at these synapses. Previous work, with an antibody that recognizes all low-affinity kainate receptor subunits (GluR5, 6, 7), provided microscopic evidence of presynaptic kainate receptors in unidentified primary afferent terminals in superficial laminae of the spinal dorsal horn (Hwang SJ, Pagliardini S, Rustioni A, Valtschanoff JG. Presynaptic kainate receptors in primary afferents to the superficial laminae of the rat spinal cord. J Comp Neurol 2001; 436: pp. 275-289). We show here that, although all such subunits may be expressed in these terminals, GluR5 is the subunit most readily detectable at presynaptic sites in sections processed for immunocytochemistry. We also show that the high-affinity kainate receptor subunits KA1 and KA2 are expressed in central terminals of DRG neurons and are co-expressed with low-affinity receptor subunits in the same terminals. Quantitative data show that kainate-expressing DRG neurons are about six times more likely to express the P2X 3 subunit of the purinergic receptor than to express substance P. Thus, nociceptive afferents that express presynaptic kainate receptors are predominantly non-peptidergic, suggesting a role for these receptors in the modulation of neuropathic rather than inflammatory pain. q
Cell and Tissue Research, 2008
Two distinct classes of nociceptive primary afferents, peptidergic and non-peptidergic, respond s... more Two distinct classes of nociceptive primary afferents, peptidergic and non-peptidergic, respond similarly to acute noxious stimulation; however the peptidergic afferents are more likely to play a role in inflammatory pain, while the non-peptidergic afferents may be more characteristically involved in neuropathic pain. Using multiple immunofluorescence, we determined the proportions of neurons in the rat L4 dorsal root ganglion (DRG) that co-express AMPA or NMDA glutamate receptors and markers for the peptidergic and non-peptidergic classes of primary afferents, substance P and P2X3, respectively. The fraction of DRG neurons immunostained for the NR1 subunit of the NMDA receptor (40%) was significantly higher than that of DRG neurons immunostained for the GluR2/3 (27%) or the GluR4 (34%) subunits of the AMPA receptor. Of all DRG neurons double-immunostained for glutamate receptor subunits and either marker for peptidergic and non-peptidergic afferents, a significantly larger proportion expressed GluR4 than GluR2/3 or NR1 and in a significantly larger proportion of P2X3- than SP-positive DRG neurons. These observations support the idea that nociceptors, involved primarily in the mediation of neuropathic pain, may be presynaptically modulated by GluR4-containing AMPA receptors.
Osteoarthritis and Cartilage, 2009
Objective-The vanilloid receptor TRPV1, expressed by sensory neurons that innervate joints, is im... more Objective-The vanilloid receptor TRPV1, expressed by sensory neurons that innervate joints, is implicated in arthritis but the mechanisms are not fully understood. One possibility is that downstream effects of activation of TRPV1 are mediated by the extracellularly-regulated kinase ERK. ERK is phosphorylated (pERK) in sensory neurons in response to noxious stimuli and its inhibition has been found to be antinociceptive in several pain models. We here wanted to ascertain whether TRPV1 may contribute to the pain hypersensitivity and inflammation of arthritis via an ERK-mediated pathway.
Journal of Comparative Neurology, 1987
Several lines of evidence indicate that the processing of somatosensory information in the dorsal... more Several lines of evidence indicate that the processing of somatosensory information in the dorsal column nuclei (DCN) is subject to descending controls. Anatomical experiments have demonstrated projections to the DCN from the sensorimotor cerebral cortex and the reticular formation. Physiological studies have shown that the activity of DCN neurons can be altered following stimulation of the cerebral cortex, reticular formation, periaqueductal gray, or raphe nuclei. Recent biochemical and electrophysiological evidence suggests a serotoninergic modulation of DCN neurons. The present study identifies serotonin-containing contacts on cells in the DCN that project to the thalamus in the rat. Retrograde labeling of brainstem neurons by horseradish peroxidase demonstrated projections to the DCN from the nucleus reticularis paragigantocellularis lateralis and from several raphe nuclei, including nuclei raphe obscurus (RO), pallidus (RP), and magnus (RM). Double labeling with horseradish peroxidase and antibody for serotonin indicated that the RO, RP and RM are likely to be the sources of the serotoninergic projections to the DCN. Thus, the role of the serotoninergic output from the raphe nuclei includes modulation of activity in the DCN.
Journal of Comparative Neurology, 1990
In the present study, serotoninergic and noradrenergic varicosities were identified in the ventra... more In the present study, serotoninergic and noradrenergic varicosities were identified in the ventral posterolateral nucleus of the macaque monkey. Monoaminergic neurons projecting to the ventral posterolateral nucleus of the thalamus were identified by using retrograde labeling with horseradish peroxidase combined with immunocytochemical staining for serotonin or dopamine-6-hydroxylase. The midbrain nucleus raphe dorsalis was the major site of origin for neurons providing a serotoninergic projection to the ventral posterolateral nucleus. A few retrogradely labeled serotonin-containing neurons were also observed in the central superior and the raphe pontis nuclei. Noradrenergic cells with projections to the thalamus were primarily located in the nucleus locus coeruleus with some projection neurons in the nucleus subcoeruleus, and the A5 catecholamine cell group of the pons.
Somatosensory and Motor Research, 1995
Stimulation of peripheral nerves activates the proto-oncogene c-fos, which in turn generates its ... more Stimulation of peripheral nerves activates the proto-oncogene c-fos, which in turn generates its gene product, Fos. Fos and Fos-like proteins are produced in the central nervous system in response to chemical, mechanical, thermal, and electrical manipulation. The present study demonstrated a relationship between the number of Fos-like-immunoreactive nuclei in the spinal dorsal horn and graded intensities of electrical stimulation applied to the hindpaws of anesthetized and unanesthetized rats. Stimulation levels within the range of 0.1 to 1.0 mA were chosen on the basis of parmeters previously determined in behavioral investigations of escape reactions. Focal stimulation at these intensities activates peripheral axons directly, but does not injure or traumatize peripheral tissues. There was no evidence of inflammation or edema as a result of the focal electrical stimulation. As the stimulation intensity increased, the number and distribution of Fos-like-labeled nuclei increased with respect to rostral-caudal and laminar orientation. The threshold for expression of Fos-like immunoreactivity was different for anesthetized and unanesthetized animals. For anesthetized animals, the number of labeled nuclei increased significantly from the control level only when 1.0 mA was applied. However, in unanesthetized animals, the pattern of labeling was statistically significant at 0.2 mA. The present study demonstrates that electrical stimulation can evoke the expression of Fos-like immunoreactivity by activating nociceptors in the absence of tissue injury, and that the use of anesthetics can modulate this expression.
Somatosensory and Motor Research, 1995
Pain, 1999
We have previously shown that Fos-like immunoreactivity (Fos-LI) is evoked in the brainstem of fe... more We have previously shown that Fos-like immunoreactivity (Fos-LI) is evoked in the brainstem of ferrets following stimulation of pulpal Ad and C ®bers originating from the maxillary canine. This study evaluated the effects of the m-opioid receptor agonist fentanyl on Fos expression evoked by noxious thermal stimulation of the right maxillary and mandibular canines in pentobarbital/chloral hydrate anesthetized adult male ferrets. Pulpal heating evoked Fos expression in two distinct regions of the spinal trigeminal nuclear complex: the transitional region between subnucleus interpolaris and caudalis (Vi/Vc) and within the subnucleus caudalis (Vc). More Fos positive cells were expressed in both regions ipsilateral to the site of stimulation compared with the contralateral side (P , 0:05, ANOVA). Pretreatment with fentanyl signi®cantly and dose-dependently suppressed the number of Fos positive cells in both the Vi/Vc transitional region and Vc (P , 0:05, ANOVA). The suppressive effect of fentanyl on Fos expression was blocked by the intravenous administration of naloxone, an opioid antagonist, indicating a speci®c opioid receptor effect. In addition, opioid receptor antagonism with naloxone alone enhanced Fos expression in Vi/Vc and Vc in response to heat stimulation. The administration of naloxone without heat stimulation failed to evoke Fos expression in Vi/ Vc and Vc. These ®ndings suggest that the activation of trigeminal Vi/Vc and Vc neurons by noxious dental heat stimulation is controlled by a naloxone sensitive endogenous opioid system as indicated by Fos expression. Collectively, these results suggest that neuronal populations in Vi/Vc and Vc regions may contribute to pain responses to noxious dental stimulation and these responses can be modulated by both endogenous and exogenous opioids. q 1999 International Association for the Study of PAIN. Published by Elsevier Science B.V.
Neuroscience Letters, 2001
In our laboratory, preliminary whole-cell, tight seal recordings of rat spinal substantia gelatin... more In our laboratory, preliminary whole-cell, tight seal recordings of rat spinal substantia gelatinosa neurons including biocytin in the patch pipette yielded a signi®cantly smaller proportion of neurons hyperpolarized by selective opioid agonists compared with recordings without biocytin. Therefore, we investigated the effects of biocytin inclusion on opioid responses and other membrane properties during whole-cell, tight seal recordings of these neurons. The percentage of neurons hyperpolarized by m-, d 1 -, and k-selective opioids was signi®cantly reduced when 1% but not #0.2% biocytin was included in the recording pipette, compared with neurons recorded without biocytin. However, a signi®cantly higher proportion of neurons ®red spontaneous action potentials with either 0.05±0.2 or 1% biocytin compared to no biocytin. Resting membrane potential, input impedance and the proportion of neurons displaying transient outward recti®cation were each signi®cantly altered for neurons recorded with 1% but not 0.05±0.2% biocytin. These effects may be due to a relatively speci®c blockade of diverse potassium channel types. Because ef®cient labeling can be achieved with 0.1% biocytin with whole-cell recording, higher concentrations are contraindicated. q
Journal of Pain, 2004
Previous studies in our laboratory have shown that long-term (a period of weeks) increases in pai... more Previous studies in our laboratory have shown that long-term (a period of weeks) increases in pain-related behavior were correlated with the activation of spinal microglia after subcutaneous injection of formalin into the dorsal surface of 1 hind paw. The present study examined whether intrathecal delivery of suramin (a P2 receptor antagonist) blocks microglia activation and long-term hyperalgesia induced by formalin injection. Suramin was administered by using an osmotic pump attached to an intrathecal catheter. Suramin delivery (1.25 microg/kg/h) began 1 day before the formalin injection and lasted for 4 days. Rats were observed by using a modified hot plate test before and at different times after formalin injection. The spinal cord was surveyed for changes in microglia labeling as shown by OX-42 staining at different times after formalin injection. Suramin decreased both the hyperalgesic sensitivity to the thermal stimuli and microglial activation induced by formalin injection as compared to the saline-treated group. This suggests that adenosine triphosphate is one potential mediator that activates spinal cord microglia and enhances pain-related behavior in the formalin model. This report suggests that blocking specific spinal P2 receptors might decrease the central enhancement of pain caused by peripheral injury and inflammation. One mechanism might be by blocking the activation of spinal microglia. Thus, P2 antagonists might have therapeutic usefulness in certain pain conditions.
Brain Research, 1992
C-los is a proto-oncogene that is expressed within some neurons following depolarization. The pro... more C-los is a proto-oncogene that is expressed within some neurons following depolarization. The protein product, los, has been proposed as an anatomical marker for neuronal activity following noxious peripheral stimulation. However, the literature on noxious-stimulus induced los expression contains several puzzling observations on the time course and laminar distribution of neuronal labeling within the spinal cord.
Experimental Neurology, 2009
Although activation of spinal glia has been implicated in the development of pathological pain, t... more Although activation of spinal glia has been implicated in the development of pathological pain, the mechanisms underlying glial activation are not fully understood. One such mechanism may be triggered by reaction to neuroactive substances released from central axons of sensory afferents. The vanilloid receptor TRPV1, a nonselective cation channel in nociceptive sensory afferents, mediates the release of neurotransmitters, such as glutamate and CGRP in the dorsal horn, which can subsequently activate glia. To test the hypothesis that activation of spinal glia is mediated, at least in part, by TRPV1, we studied the expression of markers for microglia (ionized calcium-binding adapter molecule 1, Iba1) and astrocytes (glial fibrillary acidic protein, GFAP) in the spinal cord of TRPV1 knockout mice (KO) vs. wild-type mice (WT) in models of acute (intraplantar capsaicin), inflammatory (adjuvant-induced arthritis, AIA), and neuropathic pain (partial sciatic nerve ligation, PSNL). We found that (i) naïve KO mice had denser immunostaining for both Iba1 and GFAP than naive WT mice; (ii) the immunostaining for Iba1 increased significantly in treated mice, compared to naïve mice, 3 days after capsaicin and 7-14 days after AIA or PSNL, and was significantly greater in WT than in KO mice 3 days after capsaicin, 7-14 days after AIA, and 7 days after PSNL; and iii) the immunostaining for GFAP increased significantly in treated mice, compared to naïve mice, 3 days after capsaicin and 14-21 days after AIA or PSNL, and was significantly greater in WT than in KO mice 14 days after AIA or PSNL. Our results suggest that TRPV1 plays a role in the activation of spinal glia in mice with nociceptive, inflammatory, and neuropathic pain.
Journal of Comparative Neurology, 2005
Ionotropic glutamate receptors (IGR), including NMDA, AMPA, and kainate receptors, are expressed ... more Ionotropic glutamate receptors (IGR), including NMDA, AMPA, and kainate receptors, are expressed in terminals with varied morphology in the superficial laminae (I–III) of the dorsal horn of the spinal cord. Some of these terminals can be identified as endings of primary afferents, whereas others establish symmetric synapses, suggesting that they may be γ-aminobutyric acid (GABA)-ergic. In the present study, we used confocal and electron microscopy of double immunostaining for GAD65, a marker for GABAergic terminals, and for subunits of IGRs to test directly whether IGRs are expressed in GABAergic terminals in laminae I–III of the dorsal horn. Although colocalization is hard to detect with confocal microscopy, electron microscopy reveals a substantial number of terminals immunoreactive for GAD65 also stained for IGRs. Among all GAD65-immunoreactive terminals counted, 37% express the NMDA receptor subunit NR1; 28% are immunopositive using an antibody for the GluR2/4 subunits of the AMPA receptor; and 20–35% are immunopositive using antibodies for the kainate receptor subunits GluR5, GluR6/7, KA1, or KA2. Terminals immunoreactive for IGR subunits and GAD65 establish symmetric synapses onto dendrites and perikarya and can be presynaptic to primary afferent terminals within both type 1 and type 2 synaptic glomeruli. Activation of presynaptic IGR may reduce neurotransmitter release. As autoreceptors in terminals of Aδ and C afferent fibers in laminae I–III, presynaptic IGRs may play a role in inhibiting nociception. As heteroreceptors in GABAergic terminals in the same laminae, on the other hand, presynaptic IGRs may have an opposite role and even contribute to central sensitization and hyperalgesia. J. Comp. Neurol. 486:169–178, 2005. © 2005 Wiley-Liss, Inc.
Neuropeptides, 2010
The neuropeptide Substance P (SP), expressed by nociceptive sensory afferents in joints, plays an... more The neuropeptide Substance P (SP), expressed by nociceptive sensory afferents in joints, plays an important role in the pathogenesis of arthritis. Capsaicin causes neurons in the dorsal root ganglia (DRG) to release SP from their central and peripheral axons, suggesting a functional link between SP and the capsaicin receptor, the transient receptor potential vanilloid 1 (TRPV1). The expression of both TRPV1 and SP have been reported to increase in several models of arthritis but the specific involvement of TRPV1expressing articular afferents that can release SP is not completely understood. We here wanted to ascertain whether the increase in the number of SP-positive primary afferents in arthritis may be affected by genetic deletion of TRPV1. For this, we used immunohistochemistry to quantify the expression of SP in primary afferent neurons in wild-type mice (WT) vs. TRPV1-knockout (KO) mice with adjuvant-induced arthritis (AIA). We found that the expression of SP in DRG (1) increased significantly over naïve level in both WT and KO mice 3 weeks after AIA, (2) was significantly higher in KO mice than in WT mice in naïve mice and 2-3 weeks after AIA, (3) was significantly higher on the side of AIA than on the contralateral, vehicle-injected side at all time points in WT mice, but not in KO mice, and (4) increased predominantly in small-size neurons in KO mice and in small-and medium-size neurons in WT mice. Since the size distribution of SP-positive DRG neurons in arthritic TRPV1-KO mice was not significantly different from that in naïve mice, we speculate that the increased expression of SP is unlikely to reflect recruitment of A-fiber primary afferents and that the higher expression of SP in KO mice may represent a plastic change to compensate for the missing receptor in a major sensory circuit.
Neuropeptides, 2008
The neuropeptide calcitonin gene-related peptide (CGRP), expressed by nociceptive sensory afferen... more The neuropeptide calcitonin gene-related peptide (CGRP), expressed by nociceptive sensory afferents in joints, is an important mediator in the pathogenesis of arthritis. Capsaicin causes neurons in the dorsal root ganglia (DRG) to release CGRP from their central and/or peripheral axons, suggesting a functional link between CGRP and the capsaicin receptor TRPV1. The expression of both TRPV1 and CGRP have been reported to increase in several models of arthritis but the specific involvement of TRPV1-expressing articular afferents that can release CGRP remains unclear. We here wanted to ascertain whether the increase in the number of CGRP-positive primary afferents during arthritis may be affected by genetic deletion of TRPV1. For this, we quantified the expression of CGRP in primary afferent neurons in DRG in wild type mice (WT) vs. TRPV1-KO mice with adjuvant-induced arthritis (AIA), using immunohistochemistry. We found that the fraction of DRG neurons that were immunopositive for CGRP 1) was higher in naïve TRPV1-KO mice than in naïve WT mice, 2) increased progressively 3-21 days after induction of AIA, and 3) this increase was bilateral but significantly greater on the CFA-injected side than on the IFA-injected side in TRPV1-KO mice. The increased expression of CGRP in AIA may reflect a phenotypic switch of primary afferents from non-peptidergic to peptidergic and the larger increase in TRPV1-KO mice may represent a plastic change to compensate for the missing receptor in a major sensory circuit.
Pain, 2006
Presynaptic ionotropic glutamate receptors are increasingly attributed a role in the modulation o... more Presynaptic ionotropic glutamate receptors are increasingly attributed a role in the modulation of sensory input at the first synapse of dorsal root ganglion (DRG) neurons in the spinal dorsal horn. Central terminals of DRG neurons express AMPA and NMDA receptors whose activation modulates the release of glutamate, the main transmitter at these synapses. Previous work, with an antibody that recognizes all low-affinity kainate receptor subunits (GluR5, 6, 7), provided microscopic evidence of presynaptic kainate receptors in unidentified primary afferent terminals in superficial laminae of the spinal dorsal horn (Hwang SJ, Pagliardini S, Rustioni A, Valtschanoff JG. Presynaptic kainate receptors in primary afferents to the superficial laminae of the rat spinal cord. J Comp Neurol 2001; 436: pp. 275-289). We show here that, although all such subunits may be expressed in these terminals, GluR5 is the subunit most readily detectable at presynaptic sites in sections processed for immunocytochemistry. We also show that the high-affinity kainate receptor subunits KA1 and KA2 are expressed in central terminals of DRG neurons and are co-expressed with low-affinity receptor subunits in the same terminals. Quantitative data show that kainate-expressing DRG neurons are about six times more likely to express the P2X 3 subunit of the purinergic receptor than to express substance P. Thus, nociceptive afferents that express presynaptic kainate receptors are predominantly non-peptidergic, suggesting a role for these receptors in the modulation of neuropathic rather than inflammatory pain. q
Cell and Tissue Research, 2008
Two distinct classes of nociceptive primary afferents, peptidergic and non-peptidergic, respond s... more Two distinct classes of nociceptive primary afferents, peptidergic and non-peptidergic, respond similarly to acute noxious stimulation; however the peptidergic afferents are more likely to play a role in inflammatory pain, while the non-peptidergic afferents may be more characteristically involved in neuropathic pain. Using multiple immunofluorescence, we determined the proportions of neurons in the rat L4 dorsal root ganglion (DRG) that co-express AMPA or NMDA glutamate receptors and markers for the peptidergic and non-peptidergic classes of primary afferents, substance P and P2X3, respectively. The fraction of DRG neurons immunostained for the NR1 subunit of the NMDA receptor (40%) was significantly higher than that of DRG neurons immunostained for the GluR2/3 (27%) or the GluR4 (34%) subunits of the AMPA receptor. Of all DRG neurons double-immunostained for glutamate receptor subunits and either marker for peptidergic and non-peptidergic afferents, a significantly larger proportion expressed GluR4 than GluR2/3 or NR1 and in a significantly larger proportion of P2X3- than SP-positive DRG neurons. These observations support the idea that nociceptors, involved primarily in the mediation of neuropathic pain, may be presynaptically modulated by GluR4-containing AMPA receptors.
Osteoarthritis and Cartilage, 2009
Objective-The vanilloid receptor TRPV1, expressed by sensory neurons that innervate joints, is im... more Objective-The vanilloid receptor TRPV1, expressed by sensory neurons that innervate joints, is implicated in arthritis but the mechanisms are not fully understood. One possibility is that downstream effects of activation of TRPV1 are mediated by the extracellularly-regulated kinase ERK. ERK is phosphorylated (pERK) in sensory neurons in response to noxious stimuli and its inhibition has been found to be antinociceptive in several pain models. We here wanted to ascertain whether TRPV1 may contribute to the pain hypersensitivity and inflammation of arthritis via an ERK-mediated pathway.