Martin Entling | Universität Koblenz (original) (raw)

Papers by Martin Entling

Research paper thumbnail of Landscape distribution of food and nesting sites affect larval diet and nest size, but not abundance of Osmia bicornis

Insect Science, 2015

Habitat fragmentation is a major threat for beneficial organisms and the ecosystem services they ... more Habitat fragmentation is a major threat for beneficial organisms and the ecosystem services they provide. Multiple-habitat users such as wild bees depend on both nesting and foraging habitat. Thus, they may be affected by the fragmentation of at least two habitat types. We investigate the effects of landscape-scale amount of and patchisolation fromboth nesting habitat (woody plants) and foraging habitats (specific pollen sources) on the abundance and diet of Osmia bicornis L. Trap-nests of O. bicornis were studied in 30 agricultural landscapes of the Swiss Plateau. Nesting and foraging habitats were mapped in a radius of 500 m around the sites. Pollen composition of larval diet changed as isolation to the main pollen source, Ranunculus, increased, suggesting that O. bicornis adapted its foraging strategy in function of the nest proximity to mainpollensources.Abundance of O. bicornis was neither related to isolation or amount of nesting habitat nor to isolation or abundance of food plants. Surprisingly, nests of O. bicornis contained fewer larvae in sites at forest edge compared to isolated sites, possibly due to higher parasitism risk. This study indicates that O. bicornis can nest in a variety of situations by compensatingscarcity of its main larval food by exploiting alternative food sources. This article is protected by copyright. All rights reserved.

Research paper thumbnail of Sublethal effects of imidacloprid on interactions in a tritrophic system of non-target species

Chemosphere, Jan 31, 2015

Imidacloprid is one of the most used insecticides worldwide, but is highly toxic to non-target ar... more Imidacloprid is one of the most used insecticides worldwide, but is highly toxic to non-target arthropods. Effects of sublethal imidacloprid intoxication can potentially propagate in food webs, yet little is known about the impact on non-target populations and communities. We investigated short-term sublethal toxicity of imidacloprid in a tritrophic model system of wild strawberry Fragaria vesca, wood cricket Nemobius sylvestris and nursery web spider Pisaura mirabilis. Strawberries were treated two times with 0mg (control), 1mg (low rate) and 10mg (high rate) of Confidor® WG 70 and crickets were allowed to feed on them. In four lab experiments, we quantified the impact of imidacloprid on leaf damage, growth, behaviour and survival of crickets. The high imidacloprid rate reduced feeding, mass gain, thorax growth and mobility in crickets compared to the control, while mortality was similarly low in all treatments. The low rate reduced mass gain only. Cricket survival of spider predat...

Research paper thumbnail of Risk of spider predation alters food web structure and reduces local herbivory in the field

Oecologia, Jan 29, 2015

Predators can indirectly enhance plant performance via herbivore suppression, with both prey cons... more Predators can indirectly enhance plant performance via herbivore suppression, with both prey consumption and changes in prey traits (e.g. changes in foraging behaviour) contributing to the reduction in herbivory. We performed a field experiment to determine the extent of such non-consumptive effects which consisted of repeatedly placing spiders (Pisaura mirabilis) on enclosed plants (Urtica dioica) for cue deposition. Control plants were enclosed in the same way but without spiders. After cue deposition, the enclosures were removed to allow arthropods to colonize the plants and feed on them. Arthropods were removed from the plants before the subsequent spider deposition or control enclosure. During six cycles of enclosure, we quantified leaf damage on the plants. After a seventh cycle, the colonizing arthropods were sampled to determine community composition in relation to the presence/absence of spider cues. We found that the presence of chemotactile spider cues reduced leaf damage...

Research paper thumbnail of Editorial Board

Research paper thumbnail of Habitat amount modulates the effect of patch isolation on host-parasitoid interactions

Habitat amount and patch isolation are important determinants of biodiversity and ecosystem funct... more Habitat amount and patch isolation are important determinants of biodiversity and ecosystem functioning. We studied the separate and interactive effects of these two components of habitat fragmentation on host-parasitoid interactions in a replicated landscape-scale study. We used trap-nesting solitary bees, wasps and their natural enemies as study system. We exposed trap nests in 30 tree patches in agricultural landscapes in northern Switzerland. Study sites were either (i) adjacent to forest (adjacent), (ii) distant from forest but connected through woody elements (connected) or (iii) distant from forest with no connecting woody elements (isolated). Independent of the three levels of isolation, the amount of woody habitat in the landscapes covered a gradient from 4 to 74%.Host and parasitoid species richness increased with the amount of habitat in the landscape and was strongly reduced at isolated compared to adjacent and connected sites. Loss of host species richness was 21% at isolated compared to non-isolated sites, whereas parasitoid species richness decreased by 68%, indicating that the higher trophic level was more adversely affected by isolation. Most importantly, habitat amount and isolation had a pronounced interactive effect on parasitism: while isolation resulted in a strong decrease in parasitism in landscapes with low habitat amount, this effect was mitigated by high habitat amount. These interactive effects were consistent across the three years of the study. The observed interplay between habitat amount and patch isolation may explain the often conflicting results in the habitat fragmentation literature and should be considered in future research on multitrophic communities and ecosystem functioning in fragmented landscapes.

Research paper thumbnail of Habitat isolation affects plant–herbivore–enemy interactions on cherry trees

Research paper thumbnail of Structural versus functional habitat connectivity measures to explain bird diversity in fragmented orchards

Habitat connectivity plays a paramount role in the biodiversity of fragmented landscapes. Commonl... more Habitat connectivity plays a paramount role in the biodiversity of fragmented landscapes. Commonly, connectivity is measured using simple structural metrics, e.g. Euclidean distances between habitat patches. Recently, functional measures such as cost-distance metrics have been proposed. Cost-distance metrics account for behavioural aspects of investigated organisms. They weight the habitats of the investigated landscape according to specific cost values, and model the optimal dispersal corridor according to these values. This study investigated i) if structural or functional connectivity measures explain biodiversity in a focal habitat better and ii) if the appropriateness of the measure differs between patch and landscape scale. We mapped the landscapes within a 500 m radius around 30 fragmented traditional orchards (focal patch). Connectivity measures were based on either Euclidean distances (structural) or cost-distances (functional) to other suitable habitat patches. Birds were used as biodiversity indicators. For analysis, we calculated species richness and total abundance of all species with a preference for woody habitats. In addition, abundances of four wood-preferring bird species were also examined individually. Linear models were created using stepwise forward selection. The relative performance of structural and functional connectivity measures was scale dependent. Structural metrics explained more variance at the patch scale whereas functional metrics explained more variance at the landscape scale. We conclude that simple structural metrics can be used to investigate local or small-scale effects on bird diversity but that investigations of landscape scale connectivity should consider behavioural aspects by using more complex functional metrics. The comparison between group and single species showed that not all individual species behave similarly to group results. Whilst the use of organism groups must be treated with caution, it is certainly worthy of future study.

Research paper thumbnail of Effects of habitat isolation and predation pressure on an arboreal food-web

Habitat isolation is expected to reduce population densities of animals via reduced immigration. ... more Habitat isolation is expected to reduce population densities of animals via reduced immigration. However, altered trophic interactions in isolated habitats may modify these effects, especially since the strength of isolation effects is expected to increase with trophic rank. Here, we studied effects of habitat isolation on a food-web module consisting of herbivorous beetles, predatory spiders, spider-preying wasps and arthropod-feeding birds. We compare two systems that were studied in subsequent years: a study on 29 mature apple orchards that varied in the degree of isolation from forest, and a study on 20 groups of newly planted cherry trees that showed similar variation in their degree of habitat isolation. No birds were observed on the young fruit trees. Wasps and spiders showed the expected lower abundances in isolated habitats. On mature trees, birds were present and showed lower abundances in isolated habitats. Wasps were reduced to a similar degree by habitat isolation as on the young trees. Surprisingly, spider densities on the mature trees were higher in isolated than in connected habitat. This contrasting response of spiders to habitat isolation is likely to be due to release from bird predation in isolated mature orchards. In both study systems, beetles showed no significant effect of habitat isolation. Our results confirm that the sensitivity to fragmentation increases with trophic rank, and suggest that trophic interactions should receive more attention in fragmentation studies.

Research paper thumbnail of Trait‐mediated effects between predators: ant chemical cues induce spider dispersal

Predators can induce changes in prey phenotype such as dispersal, activity and foraging rate. Suc... more Predators can induce changes in prey phenotype such as dispersal, activity and foraging rate. Such trait-mediated effects (TMEs) can strongly affect prey populations and generate trophic cascades, rivaling the importance of predation in communities. However, the relevance of TME on intraguild interactions has rarely been addressed. Ants and spiders are widespread generalist predators in terrestrial habitats. Ants influence arthropod assemblages and disrupt top-down effects of spiders on herbivores by killing spiders and/or by inducing spider emigration. Here, we examined whether ants induce dispersal behaviour in spiders. We tested the effect of chemical cues of two ant species (Lasius niger, Formica clara) on the walking activity and the propensity for silk-based dispersal of spiders. Silk-based dispersal of the web-builder Phylloneta impressa increased by 80% with exposure to Lasius cues, whereas dispersal of the hunting spider Xysticus more than doubled when confronted with cues of both Lasius and Formica. In addition, Xysticus individuals showed a marked increase in walking activity when exposed to Formica but not Lasius cues. Our results show for the first time that perceived predation risk influences spider dispersal. The strong effect of ant chemical cues on spider dispersal demonstrates that TMEs contribute to the impact of ants on arthropod communities.

Research paper thumbnail of Large variation of suction sampling efficiency depending on arthropod groups, species traits, and habitat properties

Suction sampling is widely used to estimate arthropod abundance and diversity. To test the reliab... more Suction sampling is widely used to estimate arthropod abundance and diversity. To test the reliability of abundance data derived from suction sampling, we examined sampling efficiency across a wide range of arthropod groups and tested for effects of species traits, vegetation density, and differences between sites. Suction sampling efficiency was quantified by vacuuming an enclosed meadow area and subsequent removal of the turf, which was treated with heat extraction to collect the remaining arthropods. We obtained 250 pairs of suction and turf samples from seven grasslands with variable vegetation density. High suction sampling efficiencies between 49 and 86% were obtained for Auchenorrhyncha, Heteroptera, Araneida, Curculionoidea, Hymenoptera, and Diptera. In contrast, efficiencies were below 30% for Aphidae, Thysanoptera, Staphylinidae and other Coleoptera, and for soil arthropods such as Collembola, Isopoda, Diplopoda, and Formicidae. Efficiency varied significantly among habitats (sites) for most groups, often more than two-fold. Surprisingly, sampling efficiency for Hymenoptera, Diplopoda, and Collembola increased with vegetation density, probably because aboveground activity of these taxa was higher in dense vegetation. Suction sampling was nearly twice as efficient for spiders living in the vegetation than for spiders living near the soil surface, and cursorial and large-bodied spider species were more efficiently sampled than web-builders and small species. Depending on the sampling effort, suction sampling missed between 49% (one sample) and 31% (250 samples) of the spider species present. Suction sampling efficiency varied more strongly among sites and among arthropod groups than previously recognized. Abundance data derived from suction sampling are strongly underestimated, especially for arthropods living near the soil surface. Thus, comparisons of abundance and diversity between sites should be restricted to vegetation-dwelling species of the most efficiently sampled groups. The positive relationship of sampling efficiency with vegetation density demonstrates that variation in efficiency is mediated by arthropod behaviour.

Research paper thumbnail of Trait composition, spatial relationships, trophic interactions

Research paper thumbnail of Arthropod Colonisation of Trees in Fragmented Landscapes Depends on Species Traits

The Open Ecology Journal, 2010

Effects of habitat fragmentation vary greatly between organisms. Traits such as dispersal mode an... more Effects of habitat fragmentation vary greatly between organisms. Traits such as dispersal mode and habitat preference may explain these differences. We predict that organisms with low dispersal abilities respond mainly to habitat isolation whereas aerial colonisers respond to the amount of suitable habitats at the landscape scale. To test these predictions 30 sites were chosen that varied independently in the level of isolation from woody habitats and in the percentage of woody habitats in 500 m circumference. At each site seven cherry trees were established. Overwintering arthropods were sampled using cardboard hides. Glue rings were attached around tree stems to distinguish between walking and aerial colonisers. As predicted for walking dispersers, earwig abundance was strongly affected by habitat isolation. In contrast, three species of ballooning spiders responded neither to glue rings nor to habitat isolation. Instead they were affected by habitat amount in accordance with their preferred habitats. These results strongly encourage the use of species traits to predict effects of landscape fragmentation on organisms. However, additional factors such as interactions between species groups need also to be taken into account.

Research paper thumbnail of Spider cues stimulate feeding, weight gain and survival of crickets

Ecological Entomology, 2014

1. To avoid predation, prey often change their behaviour upon encountering cues of predator prese... more 1. To avoid predation, prey often change their behaviour upon encountering cues of predator presence. Such behavioural changes should enhance individual survival, but are likely to be energy-demanding. This should deplete energy reserves of the prey, unless it increases food intake.

Research paper thumbnail of The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

Ecology and evolution, 2014

Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habit... more Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadive...

Research paper thumbnail of Disentangling multiple drivers of pollination in a landscape-scale experiment

Proceedings of the Royal Society B: Biological Sciences, 2013

Animal pollination is essential for the reproductive success of many wild and crop plants. Loss a... more Animal pollination is essential for the reproductive success of many wild and crop plants. Loss and isolation of (semi-)natural habitats in agricultural landscapes can cause declines of plants and pollinators and endanger pollination services. We investigated the independent effects of these drivers on pollination of young cherry trees in a landscape-scale experiment. We included (i) isolation of study trees from other cherry trees (up to 350 m), (ii) the amount of cherry trees in the landscape, (iii) the isolation from other woody habitats (up to 200 m) and (iv) the amount of woody habitats providing nesting and floral resources for pollinators. At the local scale, we considered effects of (v) cherry flower density and (vi) heterospecific flower density. Pollinators visited flowers more often in landscapes with high amount of woody habitat and at sites with lower isolation from the next cherry tree. Fruit set was reduced by isolation from the next cherry tree and by a high local density of heterospecific flowers but did not directly depend on pollinator visitation. These results reveal the importance of considering the plant's need for conspecific pollen and its pollen competition with co-flowering species rather than focusing only on pollinators' habitat requirements and flower visitation. It proved to be important to disentangle habitat isolation from habitat loss, local from landscape-scale effects, and direct effects of pollen availability on fruit set from indirect effects via pollinator visitation to understand the delivery of an agriculturally important ecosystem service.

Research paper thumbnail of Effects of Habitat Fragmentation on Abundance, Larval Food and Parasitism of a Spider-Hunting Wasp

PLoS ONE, 2013

Habitat fragmentation strongly affects species distribution and abundance. However, mechanisms un... more Habitat fragmentation strongly affects species distribution and abundance. However, mechanisms underlying fragmentation effects often remain unresolved. Potential mechanisms are (1) reduced dispersal of a species or (2) altered species interactions in fragmented landscapes. We studied if abundance of the spider-hunting and cavity-nesting wasp Trypoxylon figulus Linnaeus (Hymenoptera: Crabronidae) is affected by fragmentation, and then tested for any effect of larval food (bottom up regulation) and parasitism (top down regulation). Trap nests of T. figulus were studied in 30 agricultural landscapes of the Swiss Plateau. The sites varied in the level of isolation from forest (adjacent, in the open landscape but connected, isolated) and in the amount of woody habitat (from 4 % to 74 %). We recorded wasp abundance (number of occupied reed tubes), determined parasitism of brood cells and analysed the diversity and abundance of spiders that were deposited as larval food. Abundances of T. figulus were negatively related to forest cover in the landscape. In addition, T. figulus abundances were highest at forest edges, reduced by 33.1% in connected sites and by 79.4% in isolated sites. The mean number of spiders per brood cell was lowest in isolated sites. Nevertheless, structural equation modelling revealed that this did not directly determine wasp abundance. Parasitism was neither related to the amount of woody habitat nor to isolation and did not change with host density. Therefore, our study showed that the abundance of T. figulus cannot be fully explained by the studied trophic interactions. Further factors, such as dispersal and habitat preference, seem to play a role in the population dynamics of this widespread secondary carnivore in agricultural landscapes. Citation: Coudrain V, Herzog F, Entling MH (2013) Effects of Habitat Fragmentation on Abundance, Larval Food and Parasitism of a Spider-Hunting Wasp. PLoS ONE 8(3): e59286.

Research paper thumbnail of Species Richness-Environment Relationships of European Arthropods at Two Spatial Grains: Habitats and Countries

PLoS ONE, 2012

We study how species richness of arthropods relates to theories concerning net primary productivi... more We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PET(min)) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PET(min). At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area.

Research paper thumbnail of High Bee and Wasp Diversity in a Heterogeneous Tropical Farming System Compared to Protected Forest

PLoS ONE, 2012

It is a globally important challenge to meet increasing demands for resources and, at the same ti... more It is a globally important challenge to meet increasing demands for resources and, at the same time, protect biodiversity and ecosystem services. Farming is usually regarded as a major threat to biodiversity due to its expansion into natural areas. We compared biodiversity of bees and wasps between heterogeneous small-scale farming areas and protected forest in northern coastal Belize, Central America. Malaise traps operated for three months during the transition from wet to dry season. Farming areas consisted of a mosaic of mixed crop types, open habitat, secondary forest, and agroforestry. Mean species richness per site (alpha diversity), as well as spatial and temporal community variation (beta diversity) of bees and wasps were equal or higher in farming areas compared to protected forest. The higher species richness and community variation in farmland was due to additional species that did not occur in the forest, whereas most species trapped in forest were also found in farming areas. The overall regional species richness (gamma diversity) increased by 70% with the inclusion of farming areas. Our results suggest that small-scale farming systems adjacent to protected forest may not only conserve, but even favour, biodiversity of some taxonomic groups. We can, however, not exclude possible declines of bee and wasp diversity in more intensified farmland or in landscapes completely covered by heterogeneous farming systems.

Research paper thumbnail of Differential effects of habitat isolation and landscape composition on wasps, bees, and their enemies

Oecologia, 2011

Habitat loss and fragmentation are major threats to biodiversity and ecosystem functioning. Effec... more Habitat loss and fragmentation are major threats to biodiversity and ecosystem functioning. Effects of these usually intercorrelated processes on biodiversity have rarely been separated at a landscape scale. We studied the independent effects of amount of woody habitat in the landscape and three levels of isolation from the next woody habitat (patch isolation) on trap nesting bees, wasps, and their enemies at 30 farmland sites in the Swiss plateau. Species richness of wasps was negatively affected by patch isolation and positively affected by the amount of woody habitat in the landscape. In contrast, species richness of bees was neither influenced by patch isolation nor by landscape composition. Isolation from woody habitats reduced species richness and abundance of natural enemies more strongly than of their hosts, so that parasitism rate was lowered by half in isolated sites compared to forest edges. Thus, population regulation of the hosts may be weakened by habitat fragmentation. We conclude that habitat amount at the landscape scale and local patch connectivity are simultaneously important for biodiversity conservation.

Research paper thumbnail of Spiders associated with the meadow and tree canopies of orchards respond differently to habitat fragmentation

Landscape Ecology, 2010

The response of animal communities to habitat quality and fragmentation may vary depending on mic... more The response of animal communities to habitat quality and fragmentation may vary depending on microhabitat associations of species. For example, sensitivity of species to woody habitat fragmentation should increase with their degree of association with woody plants. We investigated effects of local and landscape factors on spider communities in different microhabitats within Swiss apple orchards. We expected a stronger negative effect of woody habitat fragmentation on spiders inhabiting tree canopies compared to spiders living in the meadow. The 30 orchards that we sampled varied in woody habitat amount and isolation at landscape and patch scales. Local factors included management intensity and plant diversity. Spiders associated with meadow were affected by plant diversity, but not by fragmentation. In contrast, spiders associated with canopies responded to isolation from other woody habitats. Surprisingly, we found both positive and negative effects of habitat isolation on local abundance. This indicates that differences in dispersal and/or biotic interactions shape the specific response to habitat isolation. The relative importance of local and landscape factors was in accordance with the microhabitat of the spiders. Thus, considering microhabitat associations can be important for identifying processes that would be overlooked if sampling were pooled for the whole habitat.

Research paper thumbnail of Landscape distribution of food and nesting sites affect larval diet and nest size, but not abundance of Osmia bicornis

Insect Science, 2015

Habitat fragmentation is a major threat for beneficial organisms and the ecosystem services they ... more Habitat fragmentation is a major threat for beneficial organisms and the ecosystem services they provide. Multiple-habitat users such as wild bees depend on both nesting and foraging habitat. Thus, they may be affected by the fragmentation of at least two habitat types. We investigate the effects of landscape-scale amount of and patchisolation fromboth nesting habitat (woody plants) and foraging habitats (specific pollen sources) on the abundance and diet of Osmia bicornis L. Trap-nests of O. bicornis were studied in 30 agricultural landscapes of the Swiss Plateau. Nesting and foraging habitats were mapped in a radius of 500 m around the sites. Pollen composition of larval diet changed as isolation to the main pollen source, Ranunculus, increased, suggesting that O. bicornis adapted its foraging strategy in function of the nest proximity to mainpollensources.Abundance of O. bicornis was neither related to isolation or amount of nesting habitat nor to isolation or abundance of food plants. Surprisingly, nests of O. bicornis contained fewer larvae in sites at forest edge compared to isolated sites, possibly due to higher parasitism risk. This study indicates that O. bicornis can nest in a variety of situations by compensatingscarcity of its main larval food by exploiting alternative food sources. This article is protected by copyright. All rights reserved.

Research paper thumbnail of Sublethal effects of imidacloprid on interactions in a tritrophic system of non-target species

Chemosphere, Jan 31, 2015

Imidacloprid is one of the most used insecticides worldwide, but is highly toxic to non-target ar... more Imidacloprid is one of the most used insecticides worldwide, but is highly toxic to non-target arthropods. Effects of sublethal imidacloprid intoxication can potentially propagate in food webs, yet little is known about the impact on non-target populations and communities. We investigated short-term sublethal toxicity of imidacloprid in a tritrophic model system of wild strawberry Fragaria vesca, wood cricket Nemobius sylvestris and nursery web spider Pisaura mirabilis. Strawberries were treated two times with 0mg (control), 1mg (low rate) and 10mg (high rate) of Confidor® WG 70 and crickets were allowed to feed on them. In four lab experiments, we quantified the impact of imidacloprid on leaf damage, growth, behaviour and survival of crickets. The high imidacloprid rate reduced feeding, mass gain, thorax growth and mobility in crickets compared to the control, while mortality was similarly low in all treatments. The low rate reduced mass gain only. Cricket survival of spider predat...

Research paper thumbnail of Risk of spider predation alters food web structure and reduces local herbivory in the field

Oecologia, Jan 29, 2015

Predators can indirectly enhance plant performance via herbivore suppression, with both prey cons... more Predators can indirectly enhance plant performance via herbivore suppression, with both prey consumption and changes in prey traits (e.g. changes in foraging behaviour) contributing to the reduction in herbivory. We performed a field experiment to determine the extent of such non-consumptive effects which consisted of repeatedly placing spiders (Pisaura mirabilis) on enclosed plants (Urtica dioica) for cue deposition. Control plants were enclosed in the same way but without spiders. After cue deposition, the enclosures were removed to allow arthropods to colonize the plants and feed on them. Arthropods were removed from the plants before the subsequent spider deposition or control enclosure. During six cycles of enclosure, we quantified leaf damage on the plants. After a seventh cycle, the colonizing arthropods were sampled to determine community composition in relation to the presence/absence of spider cues. We found that the presence of chemotactile spider cues reduced leaf damage...

Research paper thumbnail of Editorial Board

Research paper thumbnail of Habitat amount modulates the effect of patch isolation on host-parasitoid interactions

Habitat amount and patch isolation are important determinants of biodiversity and ecosystem funct... more Habitat amount and patch isolation are important determinants of biodiversity and ecosystem functioning. We studied the separate and interactive effects of these two components of habitat fragmentation on host-parasitoid interactions in a replicated landscape-scale study. We used trap-nesting solitary bees, wasps and their natural enemies as study system. We exposed trap nests in 30 tree patches in agricultural landscapes in northern Switzerland. Study sites were either (i) adjacent to forest (adjacent), (ii) distant from forest but connected through woody elements (connected) or (iii) distant from forest with no connecting woody elements (isolated). Independent of the three levels of isolation, the amount of woody habitat in the landscapes covered a gradient from 4 to 74%.Host and parasitoid species richness increased with the amount of habitat in the landscape and was strongly reduced at isolated compared to adjacent and connected sites. Loss of host species richness was 21% at isolated compared to non-isolated sites, whereas parasitoid species richness decreased by 68%, indicating that the higher trophic level was more adversely affected by isolation. Most importantly, habitat amount and isolation had a pronounced interactive effect on parasitism: while isolation resulted in a strong decrease in parasitism in landscapes with low habitat amount, this effect was mitigated by high habitat amount. These interactive effects were consistent across the three years of the study. The observed interplay between habitat amount and patch isolation may explain the often conflicting results in the habitat fragmentation literature and should be considered in future research on multitrophic communities and ecosystem functioning in fragmented landscapes.

Research paper thumbnail of Habitat isolation affects plant–herbivore–enemy interactions on cherry trees

Research paper thumbnail of Structural versus functional habitat connectivity measures to explain bird diversity in fragmented orchards

Habitat connectivity plays a paramount role in the biodiversity of fragmented landscapes. Commonl... more Habitat connectivity plays a paramount role in the biodiversity of fragmented landscapes. Commonly, connectivity is measured using simple structural metrics, e.g. Euclidean distances between habitat patches. Recently, functional measures such as cost-distance metrics have been proposed. Cost-distance metrics account for behavioural aspects of investigated organisms. They weight the habitats of the investigated landscape according to specific cost values, and model the optimal dispersal corridor according to these values. This study investigated i) if structural or functional connectivity measures explain biodiversity in a focal habitat better and ii) if the appropriateness of the measure differs between patch and landscape scale. We mapped the landscapes within a 500 m radius around 30 fragmented traditional orchards (focal patch). Connectivity measures were based on either Euclidean distances (structural) or cost-distances (functional) to other suitable habitat patches. Birds were used as biodiversity indicators. For analysis, we calculated species richness and total abundance of all species with a preference for woody habitats. In addition, abundances of four wood-preferring bird species were also examined individually. Linear models were created using stepwise forward selection. The relative performance of structural and functional connectivity measures was scale dependent. Structural metrics explained more variance at the patch scale whereas functional metrics explained more variance at the landscape scale. We conclude that simple structural metrics can be used to investigate local or small-scale effects on bird diversity but that investigations of landscape scale connectivity should consider behavioural aspects by using more complex functional metrics. The comparison between group and single species showed that not all individual species behave similarly to group results. Whilst the use of organism groups must be treated with caution, it is certainly worthy of future study.

Research paper thumbnail of Effects of habitat isolation and predation pressure on an arboreal food-web

Habitat isolation is expected to reduce population densities of animals via reduced immigration. ... more Habitat isolation is expected to reduce population densities of animals via reduced immigration. However, altered trophic interactions in isolated habitats may modify these effects, especially since the strength of isolation effects is expected to increase with trophic rank. Here, we studied effects of habitat isolation on a food-web module consisting of herbivorous beetles, predatory spiders, spider-preying wasps and arthropod-feeding birds. We compare two systems that were studied in subsequent years: a study on 29 mature apple orchards that varied in the degree of isolation from forest, and a study on 20 groups of newly planted cherry trees that showed similar variation in their degree of habitat isolation. No birds were observed on the young fruit trees. Wasps and spiders showed the expected lower abundances in isolated habitats. On mature trees, birds were present and showed lower abundances in isolated habitats. Wasps were reduced to a similar degree by habitat isolation as on the young trees. Surprisingly, spider densities on the mature trees were higher in isolated than in connected habitat. This contrasting response of spiders to habitat isolation is likely to be due to release from bird predation in isolated mature orchards. In both study systems, beetles showed no significant effect of habitat isolation. Our results confirm that the sensitivity to fragmentation increases with trophic rank, and suggest that trophic interactions should receive more attention in fragmentation studies.

Research paper thumbnail of Trait‐mediated effects between predators: ant chemical cues induce spider dispersal

Predators can induce changes in prey phenotype such as dispersal, activity and foraging rate. Suc... more Predators can induce changes in prey phenotype such as dispersal, activity and foraging rate. Such trait-mediated effects (TMEs) can strongly affect prey populations and generate trophic cascades, rivaling the importance of predation in communities. However, the relevance of TME on intraguild interactions has rarely been addressed. Ants and spiders are widespread generalist predators in terrestrial habitats. Ants influence arthropod assemblages and disrupt top-down effects of spiders on herbivores by killing spiders and/or by inducing spider emigration. Here, we examined whether ants induce dispersal behaviour in spiders. We tested the effect of chemical cues of two ant species (Lasius niger, Formica clara) on the walking activity and the propensity for silk-based dispersal of spiders. Silk-based dispersal of the web-builder Phylloneta impressa increased by 80% with exposure to Lasius cues, whereas dispersal of the hunting spider Xysticus more than doubled when confronted with cues of both Lasius and Formica. In addition, Xysticus individuals showed a marked increase in walking activity when exposed to Formica but not Lasius cues. Our results show for the first time that perceived predation risk influences spider dispersal. The strong effect of ant chemical cues on spider dispersal demonstrates that TMEs contribute to the impact of ants on arthropod communities.

Research paper thumbnail of Large variation of suction sampling efficiency depending on arthropod groups, species traits, and habitat properties

Suction sampling is widely used to estimate arthropod abundance and diversity. To test the reliab... more Suction sampling is widely used to estimate arthropod abundance and diversity. To test the reliability of abundance data derived from suction sampling, we examined sampling efficiency across a wide range of arthropod groups and tested for effects of species traits, vegetation density, and differences between sites. Suction sampling efficiency was quantified by vacuuming an enclosed meadow area and subsequent removal of the turf, which was treated with heat extraction to collect the remaining arthropods. We obtained 250 pairs of suction and turf samples from seven grasslands with variable vegetation density. High suction sampling efficiencies between 49 and 86% were obtained for Auchenorrhyncha, Heteroptera, Araneida, Curculionoidea, Hymenoptera, and Diptera. In contrast, efficiencies were below 30% for Aphidae, Thysanoptera, Staphylinidae and other Coleoptera, and for soil arthropods such as Collembola, Isopoda, Diplopoda, and Formicidae. Efficiency varied significantly among habitats (sites) for most groups, often more than two-fold. Surprisingly, sampling efficiency for Hymenoptera, Diplopoda, and Collembola increased with vegetation density, probably because aboveground activity of these taxa was higher in dense vegetation. Suction sampling was nearly twice as efficient for spiders living in the vegetation than for spiders living near the soil surface, and cursorial and large-bodied spider species were more efficiently sampled than web-builders and small species. Depending on the sampling effort, suction sampling missed between 49% (one sample) and 31% (250 samples) of the spider species present. Suction sampling efficiency varied more strongly among sites and among arthropod groups than previously recognized. Abundance data derived from suction sampling are strongly underestimated, especially for arthropods living near the soil surface. Thus, comparisons of abundance and diversity between sites should be restricted to vegetation-dwelling species of the most efficiently sampled groups. The positive relationship of sampling efficiency with vegetation density demonstrates that variation in efficiency is mediated by arthropod behaviour.

Research paper thumbnail of Trait composition, spatial relationships, trophic interactions

Research paper thumbnail of Arthropod Colonisation of Trees in Fragmented Landscapes Depends on Species Traits

The Open Ecology Journal, 2010

Effects of habitat fragmentation vary greatly between organisms. Traits such as dispersal mode an... more Effects of habitat fragmentation vary greatly between organisms. Traits such as dispersal mode and habitat preference may explain these differences. We predict that organisms with low dispersal abilities respond mainly to habitat isolation whereas aerial colonisers respond to the amount of suitable habitats at the landscape scale. To test these predictions 30 sites were chosen that varied independently in the level of isolation from woody habitats and in the percentage of woody habitats in 500 m circumference. At each site seven cherry trees were established. Overwintering arthropods were sampled using cardboard hides. Glue rings were attached around tree stems to distinguish between walking and aerial colonisers. As predicted for walking dispersers, earwig abundance was strongly affected by habitat isolation. In contrast, three species of ballooning spiders responded neither to glue rings nor to habitat isolation. Instead they were affected by habitat amount in accordance with their preferred habitats. These results strongly encourage the use of species traits to predict effects of landscape fragmentation on organisms. However, additional factors such as interactions between species groups need also to be taken into account.

Research paper thumbnail of Spider cues stimulate feeding, weight gain and survival of crickets

Ecological Entomology, 2014

1. To avoid predation, prey often change their behaviour upon encountering cues of predator prese... more 1. To avoid predation, prey often change their behaviour upon encountering cues of predator presence. Such behavioural changes should enhance individual survival, but are likely to be energy-demanding. This should deplete energy reserves of the prey, unless it increases food intake.

Research paper thumbnail of The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

Ecology and evolution, 2014

Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habit... more Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadive...

Research paper thumbnail of Disentangling multiple drivers of pollination in a landscape-scale experiment

Proceedings of the Royal Society B: Biological Sciences, 2013

Animal pollination is essential for the reproductive success of many wild and crop plants. Loss a... more Animal pollination is essential for the reproductive success of many wild and crop plants. Loss and isolation of (semi-)natural habitats in agricultural landscapes can cause declines of plants and pollinators and endanger pollination services. We investigated the independent effects of these drivers on pollination of young cherry trees in a landscape-scale experiment. We included (i) isolation of study trees from other cherry trees (up to 350 m), (ii) the amount of cherry trees in the landscape, (iii) the isolation from other woody habitats (up to 200 m) and (iv) the amount of woody habitats providing nesting and floral resources for pollinators. At the local scale, we considered effects of (v) cherry flower density and (vi) heterospecific flower density. Pollinators visited flowers more often in landscapes with high amount of woody habitat and at sites with lower isolation from the next cherry tree. Fruit set was reduced by isolation from the next cherry tree and by a high local density of heterospecific flowers but did not directly depend on pollinator visitation. These results reveal the importance of considering the plant's need for conspecific pollen and its pollen competition with co-flowering species rather than focusing only on pollinators' habitat requirements and flower visitation. It proved to be important to disentangle habitat isolation from habitat loss, local from landscape-scale effects, and direct effects of pollen availability on fruit set from indirect effects via pollinator visitation to understand the delivery of an agriculturally important ecosystem service.

Research paper thumbnail of Effects of Habitat Fragmentation on Abundance, Larval Food and Parasitism of a Spider-Hunting Wasp

PLoS ONE, 2013

Habitat fragmentation strongly affects species distribution and abundance. However, mechanisms un... more Habitat fragmentation strongly affects species distribution and abundance. However, mechanisms underlying fragmentation effects often remain unresolved. Potential mechanisms are (1) reduced dispersal of a species or (2) altered species interactions in fragmented landscapes. We studied if abundance of the spider-hunting and cavity-nesting wasp Trypoxylon figulus Linnaeus (Hymenoptera: Crabronidae) is affected by fragmentation, and then tested for any effect of larval food (bottom up regulation) and parasitism (top down regulation). Trap nests of T. figulus were studied in 30 agricultural landscapes of the Swiss Plateau. The sites varied in the level of isolation from forest (adjacent, in the open landscape but connected, isolated) and in the amount of woody habitat (from 4 % to 74 %). We recorded wasp abundance (number of occupied reed tubes), determined parasitism of brood cells and analysed the diversity and abundance of spiders that were deposited as larval food. Abundances of T. figulus were negatively related to forest cover in the landscape. In addition, T. figulus abundances were highest at forest edges, reduced by 33.1% in connected sites and by 79.4% in isolated sites. The mean number of spiders per brood cell was lowest in isolated sites. Nevertheless, structural equation modelling revealed that this did not directly determine wasp abundance. Parasitism was neither related to the amount of woody habitat nor to isolation and did not change with host density. Therefore, our study showed that the abundance of T. figulus cannot be fully explained by the studied trophic interactions. Further factors, such as dispersal and habitat preference, seem to play a role in the population dynamics of this widespread secondary carnivore in agricultural landscapes. Citation: Coudrain V, Herzog F, Entling MH (2013) Effects of Habitat Fragmentation on Abundance, Larval Food and Parasitism of a Spider-Hunting Wasp. PLoS ONE 8(3): e59286.

Research paper thumbnail of Species Richness-Environment Relationships of European Arthropods at Two Spatial Grains: Habitats and Countries

PLoS ONE, 2012

We study how species richness of arthropods relates to theories concerning net primary productivi... more We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PET(min)) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PET(min). At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area.

Research paper thumbnail of High Bee and Wasp Diversity in a Heterogeneous Tropical Farming System Compared to Protected Forest

PLoS ONE, 2012

It is a globally important challenge to meet increasing demands for resources and, at the same ti... more It is a globally important challenge to meet increasing demands for resources and, at the same time, protect biodiversity and ecosystem services. Farming is usually regarded as a major threat to biodiversity due to its expansion into natural areas. We compared biodiversity of bees and wasps between heterogeneous small-scale farming areas and protected forest in northern coastal Belize, Central America. Malaise traps operated for three months during the transition from wet to dry season. Farming areas consisted of a mosaic of mixed crop types, open habitat, secondary forest, and agroforestry. Mean species richness per site (alpha diversity), as well as spatial and temporal community variation (beta diversity) of bees and wasps were equal or higher in farming areas compared to protected forest. The higher species richness and community variation in farmland was due to additional species that did not occur in the forest, whereas most species trapped in forest were also found in farming areas. The overall regional species richness (gamma diversity) increased by 70% with the inclusion of farming areas. Our results suggest that small-scale farming systems adjacent to protected forest may not only conserve, but even favour, biodiversity of some taxonomic groups. We can, however, not exclude possible declines of bee and wasp diversity in more intensified farmland or in landscapes completely covered by heterogeneous farming systems.

Research paper thumbnail of Differential effects of habitat isolation and landscape composition on wasps, bees, and their enemies

Oecologia, 2011

Habitat loss and fragmentation are major threats to biodiversity and ecosystem functioning. Effec... more Habitat loss and fragmentation are major threats to biodiversity and ecosystem functioning. Effects of these usually intercorrelated processes on biodiversity have rarely been separated at a landscape scale. We studied the independent effects of amount of woody habitat in the landscape and three levels of isolation from the next woody habitat (patch isolation) on trap nesting bees, wasps, and their enemies at 30 farmland sites in the Swiss plateau. Species richness of wasps was negatively affected by patch isolation and positively affected by the amount of woody habitat in the landscape. In contrast, species richness of bees was neither influenced by patch isolation nor by landscape composition. Isolation from woody habitats reduced species richness and abundance of natural enemies more strongly than of their hosts, so that parasitism rate was lowered by half in isolated sites compared to forest edges. Thus, population regulation of the hosts may be weakened by habitat fragmentation. We conclude that habitat amount at the landscape scale and local patch connectivity are simultaneously important for biodiversity conservation.

Research paper thumbnail of Spiders associated with the meadow and tree canopies of orchards respond differently to habitat fragmentation

Landscape Ecology, 2010

The response of animal communities to habitat quality and fragmentation may vary depending on mic... more The response of animal communities to habitat quality and fragmentation may vary depending on microhabitat associations of species. For example, sensitivity of species to woody habitat fragmentation should increase with their degree of association with woody plants. We investigated effects of local and landscape factors on spider communities in different microhabitats within Swiss apple orchards. We expected a stronger negative effect of woody habitat fragmentation on spiders inhabiting tree canopies compared to spiders living in the meadow. The 30 orchards that we sampled varied in woody habitat amount and isolation at landscape and patch scales. Local factors included management intensity and plant diversity. Spiders associated with meadow were affected by plant diversity, but not by fragmentation. In contrast, spiders associated with canopies responded to isolation from other woody habitats. Surprisingly, we found both positive and negative effects of habitat isolation on local abundance. This indicates that differences in dispersal and/or biotic interactions shape the specific response to habitat isolation. The relative importance of local and landscape factors was in accordance with the microhabitat of the spiders. Thus, considering microhabitat associations can be important for identifying processes that would be overlooked if sampling were pooled for the whole habitat.