Magnus Monné | Università della Basilicata (original) (raw)
Papers by Magnus Monné
Biochimica et biophysica acta, Jan 30, 2015
The Arabidopsis thaliana genome contains 58 membrane proteins belonging to the mitochondrial carr... more The Arabidopsis thaliana genome contains 58 membrane proteins belonging to the mitochondrial carrier family. Three members of this family, here named AtAPC1, AtAPC2, AtAPC3, exhibit high structural similarities to the human mitochondrial ATP-Mg(2+)/phosphate carriers. Under normal physiological conditions the AtAPC1 gene was expressed at least five times more than the other two AtAPC genes in flower, leaf, stem, root and seedlings. However, in stress conditions the expression levels of AtAPC1 and AtAPC3 change. Direct transport assays with recombinant and reconstituted AtAPC1, AtAPC2 and AtAPC3 showed that they transport phosphate, AMP, ADP, ATP, adenosine 5'-phosphosulfate and, to a lesser extent, other nucleotides. AtAPC2 and AtAPC3 also had the ability to transport sulfate and thiosulfate. All three AtAPCs catalyzed a counter-exchange transport that was saturable and inhibited by pyridoxal-5'-phosphate. The transport activities of AtAPCs were also inhibited by the additio...
Journal of Molecular Biology, 2001
The helical hairpin, two closely spaced transmembrane helices separated by a short turn, is a com... more The helical hairpin, two closely spaced transmembrane helices separated by a short turn, is a common structural element in integral membrane proteins. Previous studies on the sequence determinants of helical hairpin formation have focussed on the role of polar and charged residues placed centrally in a long stretch of hydrophobic residues, and have yielded a “propensity scale” for the relative
Amino acids, Jan 23, 2015
Among the members of the mitochondrial carrier family, there are transporters that catalyze the t... more Among the members of the mitochondrial carrier family, there are transporters that catalyze the translocation of ornithine and related substrates, such as arginine, homoarginine, lysine, histidine, and citrulline, across the inner mitochondrial membrane. The mitochondrial carriers ORC1, ORC2, and SLC25A29 from Homo sapiens, BAC1 and BAC2 from Arabidopsis thaliana, and Ort1p from Saccharomyces cerevisiae have been biochemically characterized by transport assays in liposomes. All of them transport ornithine and amino acids with side chains terminating at least with one amine. There are, however, marked differences in their substrate specificities including their affinity for ornithine (KM values in the mM to μM range). These differences are most likely reflected by minor differences in the substrate binding sites of these carriers. The physiological role of the above-mentioned mitochondrial carriers is to link several metabolic pathways that take place partly in the cytosol and partly...
Current topics in membranes, 2014
The eukaryotic transport protein family SLC25 consists of mitochondrial carriers (MCs) that are r... more The eukaryotic transport protein family SLC25 consists of mitochondrial carriers (MCs) that are recognized on the sequence level by a threefold repeated and conserved signature motif. The majority of MCs characterized so far catalyzes strict exchanges of substrates across the mitochondrial inner membrane. The substrates are nucleotides, metabolic intermediates, and cofactors that are required in cytoplasmic and matrix metabolism. This review summarizes and discusses the current knowledge of the antiport mechanism(s) of MCs that has been deduced from determining transport characteristics and by analyzing structural, sequence, and mutagenesis data. The mode of transport varies among different MCs with respect to how the substrate translocation depends on the electrical and pH gradients across the mitochondrial inner membrane, for example, the ADP/ATP carrier is electrogenic (electrophoretic), the GTP/GDP carrier is dependent on the pH gradient, the aspartate/glutamate carrier is depen...
Protein science : a publication of the Protein Society, 2005
The overproduction of eukaryotic membrane proteins is a major impediment in their structural and ... more The overproduction of eukaryotic membrane proteins is a major impediment in their structural and functional characterization. Here we have used the nisin-inducible expression system of Lactococcus lactis for the overproduction of 11 mitochondrial transport proteins from yeast. They were expressed at high levels in a functional state in the cytoplasmic membrane. The results also show that the level of expression is influenced by the N-terminal regions of the transporters. Expression levels were improved >10-fold either by replacing or truncating these regions or by adding lactococcal signal peptides. The observed expression levels are now compatible with a realistic exploration of crystallization conditions. The lactococcal expression system may be used for the high-throughput functional characterization of eukaryotic membrane proteins and structural genomics.
Developmental and comparative immunology, 2014
Hemocytes of Heliothis virescens (F.) (Lepidoptera, Noctuidae) larvae produce a protein, P102, wi... more Hemocytes of Heliothis virescens (F.) (Lepidoptera, Noctuidae) larvae produce a protein, P102, with a putative endoribonuclease-U domain. In previous works we have shown that P102 is involved in Lepidopteran immune response by forming amyloid fibrils, which catalyze and localize melanin deposition around non-self intruders during encapsulation, preventing harmful systemic spreading. Here we demonstrate that P102 belongs to a new class of proteins that, at least in Lepidoptera, has a diminished endoribonuclease-U activity probably due to the lack of two out of five catalytically essential residues. We show that the P102 homolog from Trichoplusia ni (Lepidoptera, Noctuidae) displays catalytic site residues identical to P102, a residual endoribonuclease-U activity and the ability to form functional amyloids. On the basis of these results as well as sequence and structural analyses, we hypothesize that all the Lepidoptera endoribonuclease-U orthologs with catalytic site residues identic...
FEBS Journal, 2005
The topology of integral membrane proteins is normally determined at the time of insertion into a... more The topology of integral membrane proteins is normally determined at the time of insertion into a target membrane. In both eukaryotic and prokaryotic cells, most membrane proteins are inserted initially into the endoplasmic reticulum (ER) or inner bacterial membranes by homologous translocation machineries: the Sec61p complex in eukaryotes and the SecYEG complex in prokaryotes . Although the sequence determinants that control the final topology are fairly well understood , very little is known about the kinetics of the insertion process and whether this has any bearing on the topology. A widely accepted model is that insertion of successive transmembrane segments proceeds sequentially from the N-to the C-terminus [5,6], but detailed studies on the topology adopted by various engineered model proteins have suggested the possibility of nonsequential insertion mechanisms, where interactions between neighboring transmembrane segments or re-orientation of transmembrane segments during the insertion process determine the final topology .
European Journal of Biochemistry, 1999
We have used the natural N-glycosylation site in the N-tail of cig30, a eukaryotic polytopic memb... more We have used the natural N-glycosylation site in the N-tail of cig30, a eukaryotic polytopic membrane protein, as a marker for N-tail translocation across the microsomal membrane. Analysis of C-terminally truncated cig30 constructs reveals that the first transmembrane segment is sufficient for translocation of the wild-type N-tail; in contrast, in a mutant with four arginines introduced into the N-tail the second transmembrane segment is also required for efficient N-tail translocation. Our observations imply a non-sequential assembly mechanism in which the ultimate location of the N-tail relative to the membrane may depend on more than one transmembrane segment.
Seminars in Reproductive Medicine, 2006
Oocytes from virtually all organisms are surrounded by at least one coat. This specialized extrac... more Oocytes from virtually all organisms are surrounded by at least one coat. This specialized extracellular matrix, called the zona pellucida (ZP) in mammals and the vitelline envelope (VE) in nonmammals, has a structural function and plays essential roles in oogenesis, fertilization, and early development. During the last 15 years, compelling evidence has accumulated that all ZP/VE subunits polymerize using a conserved sequence, the ZP domain, so that the basic structural features of egg coat matrices have been maintained through evolution. Moreover, ZP domains have been identified in many other polymeric extracellular proteins from eukaryotes. This review compares the ultrastructure and molecular composition of egg coats from mollusc to human, suggests a common mechanism for assembly of ZP/VE proteins, and discusses alternative models of how these could be arranged within filaments.
Regulatory Peptides, 2005
Neuropeptide Y (NPY) has been implicated in the control of food intake and energy balance based o... more Neuropeptide Y (NPY) has been implicated in the control of food intake and energy balance based on many observations in animals. We have studied single nucleotide polymorphisms (SNPs) within the regulatory and coding sequences of the human NPY gene. One variant (1128 T>C), which causes an amino acid change from leucine to proline at codon 7 in the signal peptide of NPY, was associated with increased body mass index (BMI) in two separate Swedish populations of normal and overweight individuals. In vitro transcription and translation studies indicated the unlikelihood that this signal peptide variation affects the site of cleavage and targeting or uptake of NPY into the endoplasmic reticulum (ER). However, the mutant, and to a lesser extent the wild-type, signal peptide by themselves markedly potentiated NPY-induced food intake, as well as hypothalamic NPY receptor signaling. Our findings in humans strongly indicate that the NPY signaling system is implicated in body weight regulation and suggest a new and unexpected functional role of a signal peptide.
Protein Science, 2005
The overproduction of eukaryotic membrane proteins is a major impediment in their structural and ... more The overproduction of eukaryotic membrane proteins is a major impediment in their structural and functional characterization. Here we have used the nisin-inducible expression system of Lactococcus lactis for the overproduction of 11 mitochondrial transport proteins from yeast. They were expressed at high levels in a functional state in the cytoplasmic membrane. The results also show that the level of expression is influenced by the N-terminal regions of the transporters. Expression levels were improved >10-fold either by replacing or truncating these regions or by adding lactococcal signal peptides. The observed expression levels are now compatible with a realistic exploration of crystallization conditions. The lactococcal expression system may be used for the high-throughput functional characterization of eukaryotic membrane proteins and structural genomics.
Proceedings of the National Academy of Sciences, 2007
Mitochondrial carriers are believed widely to be dimers both in structure and function. However, ... more Mitochondrial carriers are believed widely to be dimers both in structure and function. However, the structural fold is a barrel of six transmembrane alpha-helices without an obvious dimerisation interface. Here, we show by negative dominance studies that the yeast mitochondrial ADP/ATP carrier 2 from Saccharomyces cerevisiae (AAC2) is functional as a monomer in the mitochondrial membrane. Adenine nucleotide transport by wild-type AAC2 is inhibited by the sulfhydryl reagent 2-sulfonatoethyl-methanethiosulfonate (MTSES), whereas the activity of a mutant AAC2, devoid of cysteines, is unaffected. Wild-type and cysteine-less AAC2 were coexpressed in different molar ratios in yeast mitochondrial membranes. After addition of MTSES the residual transport activity correlated linearly with the fraction of cysteine-less carrier present in the membranes, and so the two versions functioned independently of each other. Also, the cysteine-less and wild-type carriers were purified separately, mixed in defined ratios and reconstituted into liposomes. Again, the residual transport activity in the presence of MTSES depended linearly on the amount of cysteine-less carrier. Thus, the entire transport cycle for ADP/ATP exchange is carried out by the monomer.
Nature Cell Biology, 2005
Nature, 2008
Species-specific recognition between the egg extracellular matrix (zona pellucida) and sperm is t... more Species-specific recognition between the egg extracellular matrix (zona pellucida) and sperm is the first, crucial step of mammalian fertilization. Zona pellucida filament components ZP3 and ZP2 act as sperm receptors, and mice lacking either of the corresponding genes produce oocytes without a zona pellucida and are completely infertile. Like their counterparts in the vitelline envelope of non-mammalian eggs and many other secreted eukaryotic proteins, zona pellucida subunits polymerize using a 'zona pellucida (ZP) domain' module, whose conserved amino-terminal part (ZP-N) was suggested to constitute a domain of its own. No atomic structure has been reported for ZP domain proteins, and there is no structural information on any conserved vertebrate protein that is essential for fertilization and directly involved in egg-sperm binding. Here we describe the 2.3 ångström (A) resolution structure of the ZP-N fragment of mouse primary sperm receptor ZP3. The ZP-N fold defines a new immunoglobulin superfamily subtype with a beta-sheet extension characterized by an E' strand and an invariant tyrosine residue implicated in polymerization. The structure strongly supports the presence of ZP-N repeats within the N-terminal region of ZP2 and other vertebrate zona pellucida/vitelline envelope proteins, with implications for overall egg coat architecture, the post-fertilization block to polyspermy and speciation. Moreover, it provides an important framework for understanding human diseases caused by mutations in ZP domain proteins and developing new methods of non-hormonal contraception.
Molecular Membrane Biology, 2013
Mitochondrial carriers transport inorganic ions, nucleotides, amino acids, keto acids and cofacto... more Mitochondrial carriers transport inorganic ions, nucleotides, amino acids, keto acids and cofactors across the mitochondrial inner membrane. Structurally they consist of three domains, each containing two transmembrane a-helices linked by a short ahelix and loop. The substrate binds to three major contact points in the central cavity. The class of substrate (e.g., adenine nucleotides) is determined by contact point II on transmembrane a-helix H4 and the type of substrate within the class (e.g., ADP, coenzyme A) by contact point I in H2, whereas contact point III on H6 is most usually a positively charged residue, irrespective of the type or class. Two salt bridge networks, consisting of conserved and symmetric residues, are located on the matrix and cytoplasmic side of the cavity. These residues are part of the gates that are involved in opening and closing of the carrier during the transport cycle, exposing the central substrate binding site to either side of the membrane in an alternating way. Here we revisit the plethora of mutagenesis data that have been collected over the last two decades to see if the residues in the proposed binding site and salt bridge networks are indeed important for function. The analysis shows that the major contact points of the substrate binding site are indeed crucial for function and in defining the specificity. The matrix salt bridge network is more critical for function than the cytoplasmic salt bridge network in agreement with its central position, but neither is likely to be involved in substrate recognition directly.
Molecular Biology and Evolution, 2011
Species-specific recognition between egg and sperm, a crucial event that marks the beginning of f... more Species-specific recognition between egg and sperm, a crucial event that marks the beginning of fertilization in multicellular organisms, mirrors the binding between haploid cells of opposite mating type in unicellular eukaryotes such as yeast. However, as implied by the lack of sequence similarity between sperm-binding regions of invertebrate and vertebrate egg coat proteins, these interactions are thought to rely on completely different molecular entities. Here, we argue that these recognition systems are, in fact, related: despite being separated by 0.6-1 billion years of evolution, functionally essential domains of a mollusc sperm receptor and a yeast mating protein adopt the same 3D fold as egg zona pellucida proteins mediating the binding between gametes in humans.
Journal of Virology, 2003
Hepatitis C virus (HCV) belongs to the Hepacivirus genus in the Flaviviridae family. Among the le... more Hepatitis C virus (HCV) belongs to the Hepacivirus genus in the Flaviviridae family. Among the least known viral proteins in this family is the nonstructural protein NS4B, which has been suggested to be a part of the replication complex. Hydrophobicity plots indicate a common profile among the NS4B proteins from different members of the Flaviviridae family, suggesting a common function. In order to gain a deeper understanding of the nature of HCV NS4B, we have determined localization and topology of this protein by using recombinant HCV NS4B constructs. The protein localized to the endoplasmic reticulum (ER), but also induced a pattern of cytoplasmic foci positive for markers of the ER. Computer predictions of the membrane topology of NS4B suggested that it has four transmembrane segments. The N and C termini were anticipated to be localized in the cytoplasm, because they are processed by the cytoplasmic NS3 protein. By introducing glycosylation sites at various positions in HCV NS4B, we show that the C terminus is cytoplasmic and the loop around residue 161 is lumenal as predicted. Surprisingly, the N-terminal tail was translocated into the lumen in a considerable fraction of the NS4B molecules, most likely by a posttranslational process. Interestingly, NS4B proteins of the yellow fever and dengue viruses also have their N termini located in the ER lumen due to an N-terminal signal peptide not found in NS4B of HCV. A shared topology achieved in two different ways supports the notion of a common function for NS4B in FLAVIVIRIDAE:
Journal of Virology, 2007
Members of the mitochondrial carrier family have been reported in eukaryotes only, where they tra... more Members of the mitochondrial carrier family have been reported in eukaryotes only, where they transport metabolites and cofactors across the mitochondrial inner membrane to link the metabolic pathways of the cytosol and the matrix. The genome of the giant virus Mimiviridae mimivirus encodes a member of the mitochondrial carrier family of transport proteins. This viral protein has been expressed in Lactococcus lactis and is shown to transport dATP and dTTP. As the 1.2-Mb double-stranded DNA mimivirus genome is rich in A and T residues, we speculate that the virus is using this protein to target the host mitochondria as a source of deoxynucleotides for its replication.
Journal of Molecular Biology, 1998
We have studied the effects of single charged residues on the position of a model transmembrane h... more We have studied the effects of single charged residues on the position of a model transmembrane helix in the endoplasmic reticulum membrane using the glycosylation mapping technique. Asp and Glu residues cause a re-positioning of the C-terminal end of the transmembrane helix when placed in the one to two C-terminal turns but not when placed more centrally. Arg and Lys residues, in contrast, have little effect when placed in the two C-terminal turn but give rise to a more substantial shift in position when placed 9-11 residues from the helix end. We suggest that this difference between the effects of positively and negatively charged residues can be explained by the so-called snorkel effect, i.e. that the very long side-chains of Arg and Lys can reach up along the transmembrane helix to allow the terminal, charged moiety to reside in the lipid headgroup region while the C a of the residue is positioned well below the membrane/water interface.
Journal of Molecular Biology, 1999
The formation of tight turns in globular proteins has been studied for decades, both experimental... more The formation of tight turns in globular proteins has been studied for decades, both experimentally and by statistical analysis of known structures, and reliable turn propensity scales have been established (Creighto n, 1993; von Heijne, 1987). Remarkably, however, essentially nothing is known about the residue characteristics responsible for the formation of tight turns between transmembrane α-helices in integral membrane proteins. This is due in part to the paucity of high-resolution structural information for this class of proteins, but it ...
Biochimica et biophysica acta, Jan 30, 2015
The Arabidopsis thaliana genome contains 58 membrane proteins belonging to the mitochondrial carr... more The Arabidopsis thaliana genome contains 58 membrane proteins belonging to the mitochondrial carrier family. Three members of this family, here named AtAPC1, AtAPC2, AtAPC3, exhibit high structural similarities to the human mitochondrial ATP-Mg(2+)/phosphate carriers. Under normal physiological conditions the AtAPC1 gene was expressed at least five times more than the other two AtAPC genes in flower, leaf, stem, root and seedlings. However, in stress conditions the expression levels of AtAPC1 and AtAPC3 change. Direct transport assays with recombinant and reconstituted AtAPC1, AtAPC2 and AtAPC3 showed that they transport phosphate, AMP, ADP, ATP, adenosine 5'-phosphosulfate and, to a lesser extent, other nucleotides. AtAPC2 and AtAPC3 also had the ability to transport sulfate and thiosulfate. All three AtAPCs catalyzed a counter-exchange transport that was saturable and inhibited by pyridoxal-5'-phosphate. The transport activities of AtAPCs were also inhibited by the additio...
Journal of Molecular Biology, 2001
The helical hairpin, two closely spaced transmembrane helices separated by a short turn, is a com... more The helical hairpin, two closely spaced transmembrane helices separated by a short turn, is a common structural element in integral membrane proteins. Previous studies on the sequence determinants of helical hairpin formation have focussed on the role of polar and charged residues placed centrally in a long stretch of hydrophobic residues, and have yielded a “propensity scale” for the relative
Amino acids, Jan 23, 2015
Among the members of the mitochondrial carrier family, there are transporters that catalyze the t... more Among the members of the mitochondrial carrier family, there are transporters that catalyze the translocation of ornithine and related substrates, such as arginine, homoarginine, lysine, histidine, and citrulline, across the inner mitochondrial membrane. The mitochondrial carriers ORC1, ORC2, and SLC25A29 from Homo sapiens, BAC1 and BAC2 from Arabidopsis thaliana, and Ort1p from Saccharomyces cerevisiae have been biochemically characterized by transport assays in liposomes. All of them transport ornithine and amino acids with side chains terminating at least with one amine. There are, however, marked differences in their substrate specificities including their affinity for ornithine (KM values in the mM to μM range). These differences are most likely reflected by minor differences in the substrate binding sites of these carriers. The physiological role of the above-mentioned mitochondrial carriers is to link several metabolic pathways that take place partly in the cytosol and partly...
Current topics in membranes, 2014
The eukaryotic transport protein family SLC25 consists of mitochondrial carriers (MCs) that are r... more The eukaryotic transport protein family SLC25 consists of mitochondrial carriers (MCs) that are recognized on the sequence level by a threefold repeated and conserved signature motif. The majority of MCs characterized so far catalyzes strict exchanges of substrates across the mitochondrial inner membrane. The substrates are nucleotides, metabolic intermediates, and cofactors that are required in cytoplasmic and matrix metabolism. This review summarizes and discusses the current knowledge of the antiport mechanism(s) of MCs that has been deduced from determining transport characteristics and by analyzing structural, sequence, and mutagenesis data. The mode of transport varies among different MCs with respect to how the substrate translocation depends on the electrical and pH gradients across the mitochondrial inner membrane, for example, the ADP/ATP carrier is electrogenic (electrophoretic), the GTP/GDP carrier is dependent on the pH gradient, the aspartate/glutamate carrier is depen...
Protein science : a publication of the Protein Society, 2005
The overproduction of eukaryotic membrane proteins is a major impediment in their structural and ... more The overproduction of eukaryotic membrane proteins is a major impediment in their structural and functional characterization. Here we have used the nisin-inducible expression system of Lactococcus lactis for the overproduction of 11 mitochondrial transport proteins from yeast. They were expressed at high levels in a functional state in the cytoplasmic membrane. The results also show that the level of expression is influenced by the N-terminal regions of the transporters. Expression levels were improved >10-fold either by replacing or truncating these regions or by adding lactococcal signal peptides. The observed expression levels are now compatible with a realistic exploration of crystallization conditions. The lactococcal expression system may be used for the high-throughput functional characterization of eukaryotic membrane proteins and structural genomics.
Developmental and comparative immunology, 2014
Hemocytes of Heliothis virescens (F.) (Lepidoptera, Noctuidae) larvae produce a protein, P102, wi... more Hemocytes of Heliothis virescens (F.) (Lepidoptera, Noctuidae) larvae produce a protein, P102, with a putative endoribonuclease-U domain. In previous works we have shown that P102 is involved in Lepidopteran immune response by forming amyloid fibrils, which catalyze and localize melanin deposition around non-self intruders during encapsulation, preventing harmful systemic spreading. Here we demonstrate that P102 belongs to a new class of proteins that, at least in Lepidoptera, has a diminished endoribonuclease-U activity probably due to the lack of two out of five catalytically essential residues. We show that the P102 homolog from Trichoplusia ni (Lepidoptera, Noctuidae) displays catalytic site residues identical to P102, a residual endoribonuclease-U activity and the ability to form functional amyloids. On the basis of these results as well as sequence and structural analyses, we hypothesize that all the Lepidoptera endoribonuclease-U orthologs with catalytic site residues identic...
FEBS Journal, 2005
The topology of integral membrane proteins is normally determined at the time of insertion into a... more The topology of integral membrane proteins is normally determined at the time of insertion into a target membrane. In both eukaryotic and prokaryotic cells, most membrane proteins are inserted initially into the endoplasmic reticulum (ER) or inner bacterial membranes by homologous translocation machineries: the Sec61p complex in eukaryotes and the SecYEG complex in prokaryotes . Although the sequence determinants that control the final topology are fairly well understood , very little is known about the kinetics of the insertion process and whether this has any bearing on the topology. A widely accepted model is that insertion of successive transmembrane segments proceeds sequentially from the N-to the C-terminus [5,6], but detailed studies on the topology adopted by various engineered model proteins have suggested the possibility of nonsequential insertion mechanisms, where interactions between neighboring transmembrane segments or re-orientation of transmembrane segments during the insertion process determine the final topology .
European Journal of Biochemistry, 1999
We have used the natural N-glycosylation site in the N-tail of cig30, a eukaryotic polytopic memb... more We have used the natural N-glycosylation site in the N-tail of cig30, a eukaryotic polytopic membrane protein, as a marker for N-tail translocation across the microsomal membrane. Analysis of C-terminally truncated cig30 constructs reveals that the first transmembrane segment is sufficient for translocation of the wild-type N-tail; in contrast, in a mutant with four arginines introduced into the N-tail the second transmembrane segment is also required for efficient N-tail translocation. Our observations imply a non-sequential assembly mechanism in which the ultimate location of the N-tail relative to the membrane may depend on more than one transmembrane segment.
Seminars in Reproductive Medicine, 2006
Oocytes from virtually all organisms are surrounded by at least one coat. This specialized extrac... more Oocytes from virtually all organisms are surrounded by at least one coat. This specialized extracellular matrix, called the zona pellucida (ZP) in mammals and the vitelline envelope (VE) in nonmammals, has a structural function and plays essential roles in oogenesis, fertilization, and early development. During the last 15 years, compelling evidence has accumulated that all ZP/VE subunits polymerize using a conserved sequence, the ZP domain, so that the basic structural features of egg coat matrices have been maintained through evolution. Moreover, ZP domains have been identified in many other polymeric extracellular proteins from eukaryotes. This review compares the ultrastructure and molecular composition of egg coats from mollusc to human, suggests a common mechanism for assembly of ZP/VE proteins, and discusses alternative models of how these could be arranged within filaments.
Regulatory Peptides, 2005
Neuropeptide Y (NPY) has been implicated in the control of food intake and energy balance based o... more Neuropeptide Y (NPY) has been implicated in the control of food intake and energy balance based on many observations in animals. We have studied single nucleotide polymorphisms (SNPs) within the regulatory and coding sequences of the human NPY gene. One variant (1128 T>C), which causes an amino acid change from leucine to proline at codon 7 in the signal peptide of NPY, was associated with increased body mass index (BMI) in two separate Swedish populations of normal and overweight individuals. In vitro transcription and translation studies indicated the unlikelihood that this signal peptide variation affects the site of cleavage and targeting or uptake of NPY into the endoplasmic reticulum (ER). However, the mutant, and to a lesser extent the wild-type, signal peptide by themselves markedly potentiated NPY-induced food intake, as well as hypothalamic NPY receptor signaling. Our findings in humans strongly indicate that the NPY signaling system is implicated in body weight regulation and suggest a new and unexpected functional role of a signal peptide.
Protein Science, 2005
The overproduction of eukaryotic membrane proteins is a major impediment in their structural and ... more The overproduction of eukaryotic membrane proteins is a major impediment in their structural and functional characterization. Here we have used the nisin-inducible expression system of Lactococcus lactis for the overproduction of 11 mitochondrial transport proteins from yeast. They were expressed at high levels in a functional state in the cytoplasmic membrane. The results also show that the level of expression is influenced by the N-terminal regions of the transporters. Expression levels were improved >10-fold either by replacing or truncating these regions or by adding lactococcal signal peptides. The observed expression levels are now compatible with a realistic exploration of crystallization conditions. The lactococcal expression system may be used for the high-throughput functional characterization of eukaryotic membrane proteins and structural genomics.
Proceedings of the National Academy of Sciences, 2007
Mitochondrial carriers are believed widely to be dimers both in structure and function. However, ... more Mitochondrial carriers are believed widely to be dimers both in structure and function. However, the structural fold is a barrel of six transmembrane alpha-helices without an obvious dimerisation interface. Here, we show by negative dominance studies that the yeast mitochondrial ADP/ATP carrier 2 from Saccharomyces cerevisiae (AAC2) is functional as a monomer in the mitochondrial membrane. Adenine nucleotide transport by wild-type AAC2 is inhibited by the sulfhydryl reagent 2-sulfonatoethyl-methanethiosulfonate (MTSES), whereas the activity of a mutant AAC2, devoid of cysteines, is unaffected. Wild-type and cysteine-less AAC2 were coexpressed in different molar ratios in yeast mitochondrial membranes. After addition of MTSES the residual transport activity correlated linearly with the fraction of cysteine-less carrier present in the membranes, and so the two versions functioned independently of each other. Also, the cysteine-less and wild-type carriers were purified separately, mixed in defined ratios and reconstituted into liposomes. Again, the residual transport activity in the presence of MTSES depended linearly on the amount of cysteine-less carrier. Thus, the entire transport cycle for ADP/ATP exchange is carried out by the monomer.
Nature Cell Biology, 2005
Nature, 2008
Species-specific recognition between the egg extracellular matrix (zona pellucida) and sperm is t... more Species-specific recognition between the egg extracellular matrix (zona pellucida) and sperm is the first, crucial step of mammalian fertilization. Zona pellucida filament components ZP3 and ZP2 act as sperm receptors, and mice lacking either of the corresponding genes produce oocytes without a zona pellucida and are completely infertile. Like their counterparts in the vitelline envelope of non-mammalian eggs and many other secreted eukaryotic proteins, zona pellucida subunits polymerize using a 'zona pellucida (ZP) domain' module, whose conserved amino-terminal part (ZP-N) was suggested to constitute a domain of its own. No atomic structure has been reported for ZP domain proteins, and there is no structural information on any conserved vertebrate protein that is essential for fertilization and directly involved in egg-sperm binding. Here we describe the 2.3 ångström (A) resolution structure of the ZP-N fragment of mouse primary sperm receptor ZP3. The ZP-N fold defines a new immunoglobulin superfamily subtype with a beta-sheet extension characterized by an E' strand and an invariant tyrosine residue implicated in polymerization. The structure strongly supports the presence of ZP-N repeats within the N-terminal region of ZP2 and other vertebrate zona pellucida/vitelline envelope proteins, with implications for overall egg coat architecture, the post-fertilization block to polyspermy and speciation. Moreover, it provides an important framework for understanding human diseases caused by mutations in ZP domain proteins and developing new methods of non-hormonal contraception.
Molecular Membrane Biology, 2013
Mitochondrial carriers transport inorganic ions, nucleotides, amino acids, keto acids and cofacto... more Mitochondrial carriers transport inorganic ions, nucleotides, amino acids, keto acids and cofactors across the mitochondrial inner membrane. Structurally they consist of three domains, each containing two transmembrane a-helices linked by a short ahelix and loop. The substrate binds to three major contact points in the central cavity. The class of substrate (e.g., adenine nucleotides) is determined by contact point II on transmembrane a-helix H4 and the type of substrate within the class (e.g., ADP, coenzyme A) by contact point I in H2, whereas contact point III on H6 is most usually a positively charged residue, irrespective of the type or class. Two salt bridge networks, consisting of conserved and symmetric residues, are located on the matrix and cytoplasmic side of the cavity. These residues are part of the gates that are involved in opening and closing of the carrier during the transport cycle, exposing the central substrate binding site to either side of the membrane in an alternating way. Here we revisit the plethora of mutagenesis data that have been collected over the last two decades to see if the residues in the proposed binding site and salt bridge networks are indeed important for function. The analysis shows that the major contact points of the substrate binding site are indeed crucial for function and in defining the specificity. The matrix salt bridge network is more critical for function than the cytoplasmic salt bridge network in agreement with its central position, but neither is likely to be involved in substrate recognition directly.
Molecular Biology and Evolution, 2011
Species-specific recognition between egg and sperm, a crucial event that marks the beginning of f... more Species-specific recognition between egg and sperm, a crucial event that marks the beginning of fertilization in multicellular organisms, mirrors the binding between haploid cells of opposite mating type in unicellular eukaryotes such as yeast. However, as implied by the lack of sequence similarity between sperm-binding regions of invertebrate and vertebrate egg coat proteins, these interactions are thought to rely on completely different molecular entities. Here, we argue that these recognition systems are, in fact, related: despite being separated by 0.6-1 billion years of evolution, functionally essential domains of a mollusc sperm receptor and a yeast mating protein adopt the same 3D fold as egg zona pellucida proteins mediating the binding between gametes in humans.
Journal of Virology, 2003
Hepatitis C virus (HCV) belongs to the Hepacivirus genus in the Flaviviridae family. Among the le... more Hepatitis C virus (HCV) belongs to the Hepacivirus genus in the Flaviviridae family. Among the least known viral proteins in this family is the nonstructural protein NS4B, which has been suggested to be a part of the replication complex. Hydrophobicity plots indicate a common profile among the NS4B proteins from different members of the Flaviviridae family, suggesting a common function. In order to gain a deeper understanding of the nature of HCV NS4B, we have determined localization and topology of this protein by using recombinant HCV NS4B constructs. The protein localized to the endoplasmic reticulum (ER), but also induced a pattern of cytoplasmic foci positive for markers of the ER. Computer predictions of the membrane topology of NS4B suggested that it has four transmembrane segments. The N and C termini were anticipated to be localized in the cytoplasm, because they are processed by the cytoplasmic NS3 protein. By introducing glycosylation sites at various positions in HCV NS4B, we show that the C terminus is cytoplasmic and the loop around residue 161 is lumenal as predicted. Surprisingly, the N-terminal tail was translocated into the lumen in a considerable fraction of the NS4B molecules, most likely by a posttranslational process. Interestingly, NS4B proteins of the yellow fever and dengue viruses also have their N termini located in the ER lumen due to an N-terminal signal peptide not found in NS4B of HCV. A shared topology achieved in two different ways supports the notion of a common function for NS4B in FLAVIVIRIDAE:
Journal of Virology, 2007
Members of the mitochondrial carrier family have been reported in eukaryotes only, where they tra... more Members of the mitochondrial carrier family have been reported in eukaryotes only, where they transport metabolites and cofactors across the mitochondrial inner membrane to link the metabolic pathways of the cytosol and the matrix. The genome of the giant virus Mimiviridae mimivirus encodes a member of the mitochondrial carrier family of transport proteins. This viral protein has been expressed in Lactococcus lactis and is shown to transport dATP and dTTP. As the 1.2-Mb double-stranded DNA mimivirus genome is rich in A and T residues, we speculate that the virus is using this protein to target the host mitochondria as a source of deoxynucleotides for its replication.
Journal of Molecular Biology, 1998
We have studied the effects of single charged residues on the position of a model transmembrane h... more We have studied the effects of single charged residues on the position of a model transmembrane helix in the endoplasmic reticulum membrane using the glycosylation mapping technique. Asp and Glu residues cause a re-positioning of the C-terminal end of the transmembrane helix when placed in the one to two C-terminal turns but not when placed more centrally. Arg and Lys residues, in contrast, have little effect when placed in the two C-terminal turn but give rise to a more substantial shift in position when placed 9-11 residues from the helix end. We suggest that this difference between the effects of positively and negatively charged residues can be explained by the so-called snorkel effect, i.e. that the very long side-chains of Arg and Lys can reach up along the transmembrane helix to allow the terminal, charged moiety to reside in the lipid headgroup region while the C a of the residue is positioned well below the membrane/water interface.
Journal of Molecular Biology, 1999
The formation of tight turns in globular proteins has been studied for decades, both experimental... more The formation of tight turns in globular proteins has been studied for decades, both experimentally and by statistical analysis of known structures, and reliable turn propensity scales have been established (Creighto n, 1993; von Heijne, 1987). Remarkably, however, essentially nothing is known about the residue characteristics responsible for the formation of tight turns between transmembrane α-helices in integral membrane proteins. This is due in part to the paucity of high-resolution structural information for this class of proteins, but it ...