Primo Schär | University of Basel (original) (raw)

Papers by Primo Schär

Research paper thumbnail of A newly identified DNA ligase of Saccharomyces cerevisiaeinvolved in RAD52-independent repair of DNA double-strand breaks

Genes & Development, 1997

Eukaryotic DNA ligases are ATP-dependent DNA strand-joining enzymes that participate in DNA repli... more Eukaryotic DNA ligases are ATP-dependent DNA strand-joining enzymes that participate in DNA replication, repair, and recombination. Whereas mammalian cells contain several different DNA ligases, encoded by at least three distinct genes, only one DNA ligase has been detected previously in either budding yeast or fission yeast. Here, we describe a newly identified nonessential Saccharomyces cerevisiae gene that encodes a DNA ligase distinct from the CDC9 gene product. This DNA ligase shares significant amino acid sequence homology with human DNA ligase IV; accordingly, we designate the yeast gene LIG4.Recombinant LIG4 protein forms a covalent enzyme-AMP complex and can join a DNA single-strand break in a DNA/RNA hybrid duplex, the preferred substrate in vitro. Disruption of theLIG4 gene causes only marginally increased cellular sensitivity to several DNA damaging agents, and does not further sensitizecdc9 or rad52 mutant cells. In contrast, lig4mutant cells have a 1000-fold reduced ca...

Research paper thumbnail of Preferential strand transfer and hybrid DNA formation at the recombination hotspot ade6-M26 of Schizosaccharomyces pombe

The EMBO Journal, 1994

The ade6-M26 mutation of Schizosaccharomyces pombe stimulates intragenic and intergenic meiotic r... more The ade6-M26 mutation of Schizosaccharomyces pombe stimulates intragenic and intergenic meiotic recombination. M26 is a single base pair change creating a specific heptanucleotide sequence that is crucial for recombination hotspot activity. This sequence is recognized by proteins that may facilitate rate-limiting steps of recombination at the ade6 locus. To start the elucidation of the intermediate DNA structures formed during M26 recombination, we have analyzed the aberrant segregation patterns of two G to C transversion mutations flanking the heptanucleotide sequence in crosses homozygous for M26. At both sites the level of post-meiotic segregation is typical for G to C transversion mutations in S.pombe in general. Quantitative treatment of the data provides strong evidence for heteroduplex DNA being the major recombination intermediate at the M26 site. We can now exclude a double-strand gap repair mechanism to account for gene conversion across the recombination hotspot. Furthermore, the vast majority (>95%) of the heteroduplexes covering either of the G to C transversion sites are produced by transfer of the transcribed DNA strand. These results are consistent with ade6-M26 creating an initiation site for gene conversion by the introduction of a single-strand or a double-strand break in its vicinity, followed by transfer of the transcribed DNA strands for heteroduplex DNA formation.

Research paper thumbnail of DNA methylation instability by BRAF-mediated TET silencing and lifestyle-exposure divides colon cancer pathways

Clinical Epigenetics, 2019

Background Aberrations in DNA methylation are widespread in colon cancer (CC). Understanding orig... more Background Aberrations in DNA methylation are widespread in colon cancer (CC). Understanding origin and progression of DNA methylation aberrations is essential to develop effective preventive and therapeutic strategies. Here, we aimed to dissect CC subtype-specific methylation instability to understand underlying mechanisms and functions. Methods We have assessed genome-wide DNA methylation in the healthy normal colon mucosa (HNM), precursor lesions and CCs in a first comprehensive study to delineate epigenetic change along the process of colon carcinogenesis. Mechanistically, we used stable cell lines, genetically engineered mouse model of mutant BRAFV600E and molecular biology analysis to establish the role of BRAFV600E-mediated-TET inhibition in CpG-island methylator phenotype (CIMP) inititation. Results We identified two distinct patterns of CpG methylation instability, determined either by age–lifestyle (CC-neutral CpGs) or genetically (CIMP-CpGs). CC-neutral-CpGs showed age-de...

Research paper thumbnail of SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation

The EMBO Journal, 2018

During active DNA demethylation, 5-methylcytosine (5mC) is oxidized by TET proteins to 5-formyl-/... more During active DNA demethylation, 5-methylcytosine (5mC) is oxidized by TET proteins to 5-formyl-/5-carboxylcytosine (5fC/5caC) for replacement by unmethylated C by TDG-initiated DNA base excision repair (BER). Base excision generates fragile abasic sites (AP-sites) in DNA and has to be coordinated with subsequent repair steps to limit accumulation of genome destabilizing secondary DNA lesions. Here, we show that 5fC/5caC is generated at a high rate in genomes of differentiating mouse embryonic stem cells and that SUMOylation and the BER protein XRCC1 play critical roles in orchestrating TDG-initiated BER of these lesions. SUMOylation of XRCC1 facilitates physical interaction with TDG and promotes the assembly of a TDG-BER core complex. Within this TDG-BERosome, SUMO is transferred from XRCC1 and coupled to the SUMO acceptor lysine in TDG, promoting its dissociation while assuring the engagement of the BER machinery to complete demethylation. Although well-studied, the biological importance of TDG SUMOylation has remained obscure. Here, we demonstrate that SUMOylation of TDG suppresses DNA strand-break accumulation and toxicity to PARP inhibition in differentiating mESCs and is essential for neural lineage commitment.

Research paper thumbnail of 3CAPS - a structural AP-site analogue as a tool to investigate DNA base excision repair

Nucleic acids research, Jan 4, 2016

Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as in... more Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP-sites. With its 3'-phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5'-deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, und...

Research paper thumbnail of Base Excision by Thymine DNA Glycosylase Mediates DNA-Directed Cytotoxicity of 5-Fluorouracil

Research paper thumbnail of The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs

Nucleic Acids Research, 2003

Human thymine-DNA glycosylase (TDG) is well known to excise thymine and uracil from G´T and G´U m... more Human thymine-DNA glycosylase (TDG) is well known to excise thymine and uracil from G´T and G´U mismatches, respectively, and was therefore proposed to play a central role in the cellular defense against genetic mutation through spontaneous deamination of 5-methylcytosine and cytosine. In this study, we characterized two newly discovered orthologs of TDG, the Drosophila melanogaster Thd1p and the Schizosaccharomyces pombe Thp1p proteins, with an objective to address the function of this subfamily of uracil-DNA glycosylases from an evolutionary perspective. A systematic biochemical comparison of both enzymes with human TDG revealed a number of biologically signi®cant facts. (i) All eukaryotic TDG orthologs have broad and species-speci®c substrate spectra that include a variety of damaged pyrimidine and purine bases; (ii) the common most ef®ciently processed substrates of all are uracil and 3,N4ethenocytosine opposite guanine and 5-¯uorouracil in any double-stranded DNA context; (iii) 5-methylcytosine and thymine derivatives are processed with an appreciable ef®ciency only by the human and the Drosophila enzymes; (iv) none of the proteins is able to hydrolyze a non-damaged 5¢-methylcytosine opposite G; and (v) the double strand and mismatch dependency of the enzymes varies with the substrate and is not a stringent feature of this subfamily of DNA glycosylases. These ®ndings advance our current view on the role of TDG proteins and document that they have evolved with high structural exibility to counter a broad range of DNA base damage in accordance with the speci®c needs of individual species.

Research paper thumbnail of T:G mismatch-specific thymine-DNA glycosylase (TDG) as a coregulator of transcription interacts with SRC1 family members through a novel tyrosine repeat motif

Nucleic Acids Research, 2005

Research paper thumbnail of Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2

Nucleic Acids Research, 2007

Research paper thumbnail of Identification of hMutLbeta , a Heterodimer of hMLH1 and hPMS1

Journal of Biological Chemistry, 1999

Research paper thumbnail of Separating Substrate Recognition from Base Hydrolysis in Human Thymine DNA Glycosylase by Mutational Analysis

Journal of Biological Chemistry, 2000

Research paper thumbnail of Biochemical Characterization of Uracil Processing Activities in the Hyperthermophilic Archaeon Pyrobaculum aerophilum

Journal of Biological Chemistry, 2001

Research paper thumbnail of DNA glycosylases: in DNA repair and beyond

Research paper thumbnail of Extremely low-frequency magnetic fields and risk of childhood leukemia: A risk assessment by the ARIMMORA consortium

Bioelectromagnetics, 2016

Exposure to extremely low-frequency magnetic fields (ELF-MF) was evaluated in an International Ag... more Exposure to extremely low-frequency magnetic fields (ELF-MF) was evaluated in an International Agency for Research on Cancer (IARC) Monographs as "possibly carcinogenic to humans" in 2001, based on increased childhood leukemia risk observed in epidemiological studies. We conducted a hazard assessment using available scientific evidence published before March 2015, with inclusion of new research findings from the Advanced Research on Interaction Mechanisms of electroMagnetic exposures with Organisms for Risk Assessment (ARIMMORA) project. The IARC Monograph evaluation scheme was applied to hazard identification. In ARIMMORA for the first time, a transgenic mouse model was used to mimic the most common childhood leukemia: new pathogenic mechanisms were indicated, but more data are needed to draw definitive conclusions. Although experiments in different animal strains showed exposure-related decreases of CD8+ T-cells, a role in carcinogenesis must be further established. No direct damage of DNA by exposure was observed. Overall in the literature, there is limited evidence of carcinogenicity in humans and inadequate evidence of carcinogenicity in experimental animals, with only weak supporting evidence from mechanistic studies. New exposure data from ARIMMORA confirmed that if the association is nevertheless causal, up to 2% of childhood leukemias in Europe, as previously estimated, may be attributable to ELF-MF. In summary, ARIMMORA concludes that the relationship between ELF-MF and childhood leukemia remains consistent with possible carcinogenicity in humans. While this scientific uncertainty is dissatisfactory for science and public health, new mechanistic insight from ARIMMORA experiments points to future research that could provide a step-change in future assessments. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc.

Research paper thumbnail of Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4

The EMBO Journal, 1998

Saccharomyces cerevisiae DNA ligase IV (LIG4) has been shown previously to be involved in non-hom... more Saccharomyces cerevisiae DNA ligase IV (LIG4) has been shown previously to be involved in non-homologous DNA end joining and meiosis. The homologous mammalian DNA ligase IV interacts with XRCC4, a protein implicated in V(D)J recombination and doublestrand break repair. Here, we report the discovery of LIF1, a S.cerevisiae protein that strongly interacts with the C-terminal BRCT domain of yeast LIG4. LIG4 and LIF1 apparently occur as a heterodimer in vivo. LIF1 shares limited sequence homology with mammalian XRCC4. Disruption of the LIF1 gene abolishes the capacity of cells to recircularize transformed linearized plasmids correctly by non-homologous DNA end joining. Loss of LIF1 is also associated with conditional hypersensitivity of cells to ionizing irradiation and with reduced sporulation efficiency. Thus, with respect to their phenotype, lif1 strains are similar to the previously described lig4 mutants. One function of LIF1 is the stabilization of the LIG4 enzyme. The finding of a XRCC4 homologue in S.cerevisiae now allows for mutational analyses of structure-function relationships in XRCC4-like proteins to define their role in DNA double-strand break repair.

Research paper thumbnail of DNA repair and the control of DNA methylation

The successful establishment and stable maintenance of cell identity are critical for organismal ... more The successful establishment and stable maintenance of cell identity are critical for organismal development and tissue homeostasis. Cell identity is provided by epigenetic mechanisms that facilitate a selective readout of the genome. Operating at the level of chromatin, they establish defined gene expression programs during cell differentiation. Among the epigenetic modifications in mammalian chromatin, the 5'-methylation of cytosine in CpG dinucleotides is unique in that it affects the DNA rather than histones and the biochemistry of the DNA methylating enzymes offers a mechanistic explanation for stable inheritance. Yet, DNA methylation states appear to be more dynamic and their maintenance more complex than existing models predict. Also, methylation patterns are by far not always faithfully inherited, as best exemplified by human cancers. Often, these show widespread hypo- or hypermethylation across their genomes, reflecting an underlying epigenetic instability that may have...

Research paper thumbnail of Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer

BACKGROUND & AIMS Germline mutations in the DNA mismatch repair (MMR) genes MSH2, MSH6, or MLH1 p... more BACKGROUND & AIMS Germline mutations in the DNA mismatch repair (MMR) genes MSH2, MSH6, or MLH1 predispose to colorectal cancer (CRC) with an autosomal dominant inheritance pattern. The protein encoded by PMS2 is also essential for MMR; however, alterations in this gene have been documented only in extremely rare cases. We addressed this unexpected finding by analyzing a large series of CRCs. METHODS Expression of MSH2, MSH6, MLH1, and PMS2 was studied by immunohistochemistry in 1048 unselected, consecutive CRCs. Where absence of MMR proteins was detected, microsatellite instability and cytosine methylation of the respective gene promoter were analyzed. The DNA of patients presenting with PMS2-deficient cancers was examined for germline and somatic alterations in the PMS2 gene. RESULTS An aberrant pattern of MMR protein expression was detected in 13.2% of CRCs. Loss of expression of MSH2, MSH6, or MLH1 was found in 1.4%, 0.5%, and 9.8%, respectively. PMS2 deficiency accompanied by m...

Research paper thumbnail of Mismatch Repair in Schizosacchromyces pombe Requires the mutL Homologous Gene pms1: Molecular Cloning and Functional Analysis

Genetics

Homologues of the bacterial mutS and mutL genes involved in DNA mismatch repair have been found i... more Homologues of the bacterial mutS and mutL genes involved in DNA mismatch repair have been found in organisms from bacteria to humans. Here, we describe the structure and function of a newly identified Schizosaccharomyces pombe gene that encodes a predicted amino acid sequence of 794 residues with a high degree of homology to MutL related proteins. On the basis of its closer relationship to the eukaryotic “PMS” genes than to the “MLH” genes, we have designated the S. pombe homologue pms1. Disruption of the pms1 gene causes a significant increase of spontaneous mutagenesis as documented by reversion rate measurements. Tetrad analyses of crosses homozygous for the pms1 mutation reveal a reduction of spore viability from >92% to 80% associated with a low proportion (∼50%) of meioses producing four viable spores and a significant, allele-dependent increase of the level of post-meiotic segregation of genetic marker allele pairs. The mutant phenotypes are consistent with a general funct...

Research paper thumbnail of Longitudinal analysis of healthy colon establishes aspirin as a suppressor of cancer-related epigenetic aging

Clinical Epigenetics

Background Colon cancer (CC) is the third most common cancer worldwide, highlighting the importan... more Background Colon cancer (CC) is the third most common cancer worldwide, highlighting the importance of developing effective prevention strategies. Accumulating evidence supports that aspirin use reduces CC incidence. We reported previously that aspirin suppresses age-associated and CC-relevant DNA methylation (DNAm) in healthy colon. Here we addressed the aspirin’s effectiveness in longitudinal cohort. Methods We measured genome-wide DNAm in 124 healthy normal mucosa samples taken at baseline (time point 1, t1) and after 10-years follow-up (time point 2, t2) from a longitudinal female screening cohort. We investigated the time-dependent methylation drift in aspirin users and nonusers using multivariable regression and related the modulatory effect of aspirin to colonic epigenome-aging and CC. Results Over time, compared to nonusers, long-term (≥ 2 years) aspirin users showed less hypermethylated CpGs (proximal: 17% vs. 87%; distal: 16% vs. 70%) and more hypomethylated CpGs (proximal...

Research paper thumbnail of Inducible TDG knockout models to study epigenetic regulation

F1000Research

Mechanistic and functional studies by gene disruption or editing approaches often suffer from con... more Mechanistic and functional studies by gene disruption or editing approaches often suffer from confounding effects like compensatory cellular adaptations generated by clonal selection. These issues become particularly relevant when studying factors directly involved in genetic or epigenetic maintenance. To provide a genetic tool for functional and mechanistic investigation of DNA-repair mediated active DNA demethylation, we generated experimental models in mice and murine embryonic stem cells (ESCs) based on a minigene of the thymine-DNA glycosylase (TDG). The loxP-flanked miniTdg is rapidly and reliably excised in mice and ESCs by tamoxifen-induced Cre activation, depleting TDG to undetectable levels within 24 hours. We describe the functionality of the engineered miniTdg in mouse and ESCs (TDGiKO ESCs) and validate the pluripotency and differentiation potential of TDGiKO ESCs as well as the phenotype of induced TDG depletion. The controlled and rapid depletion of TDG allows for a p...

Research paper thumbnail of A newly identified DNA ligase of Saccharomyces cerevisiaeinvolved in RAD52-independent repair of DNA double-strand breaks

Genes & Development, 1997

Eukaryotic DNA ligases are ATP-dependent DNA strand-joining enzymes that participate in DNA repli... more Eukaryotic DNA ligases are ATP-dependent DNA strand-joining enzymes that participate in DNA replication, repair, and recombination. Whereas mammalian cells contain several different DNA ligases, encoded by at least three distinct genes, only one DNA ligase has been detected previously in either budding yeast or fission yeast. Here, we describe a newly identified nonessential Saccharomyces cerevisiae gene that encodes a DNA ligase distinct from the CDC9 gene product. This DNA ligase shares significant amino acid sequence homology with human DNA ligase IV; accordingly, we designate the yeast gene LIG4.Recombinant LIG4 protein forms a covalent enzyme-AMP complex and can join a DNA single-strand break in a DNA/RNA hybrid duplex, the preferred substrate in vitro. Disruption of theLIG4 gene causes only marginally increased cellular sensitivity to several DNA damaging agents, and does not further sensitizecdc9 or rad52 mutant cells. In contrast, lig4mutant cells have a 1000-fold reduced ca...

Research paper thumbnail of Preferential strand transfer and hybrid DNA formation at the recombination hotspot ade6-M26 of Schizosaccharomyces pombe

The EMBO Journal, 1994

The ade6-M26 mutation of Schizosaccharomyces pombe stimulates intragenic and intergenic meiotic r... more The ade6-M26 mutation of Schizosaccharomyces pombe stimulates intragenic and intergenic meiotic recombination. M26 is a single base pair change creating a specific heptanucleotide sequence that is crucial for recombination hotspot activity. This sequence is recognized by proteins that may facilitate rate-limiting steps of recombination at the ade6 locus. To start the elucidation of the intermediate DNA structures formed during M26 recombination, we have analyzed the aberrant segregation patterns of two G to C transversion mutations flanking the heptanucleotide sequence in crosses homozygous for M26. At both sites the level of post-meiotic segregation is typical for G to C transversion mutations in S.pombe in general. Quantitative treatment of the data provides strong evidence for heteroduplex DNA being the major recombination intermediate at the M26 site. We can now exclude a double-strand gap repair mechanism to account for gene conversion across the recombination hotspot. Furthermore, the vast majority (>95%) of the heteroduplexes covering either of the G to C transversion sites are produced by transfer of the transcribed DNA strand. These results are consistent with ade6-M26 creating an initiation site for gene conversion by the introduction of a single-strand or a double-strand break in its vicinity, followed by transfer of the transcribed DNA strands for heteroduplex DNA formation.

Research paper thumbnail of DNA methylation instability by BRAF-mediated TET silencing and lifestyle-exposure divides colon cancer pathways

Clinical Epigenetics, 2019

Background Aberrations in DNA methylation are widespread in colon cancer (CC). Understanding orig... more Background Aberrations in DNA methylation are widespread in colon cancer (CC). Understanding origin and progression of DNA methylation aberrations is essential to develop effective preventive and therapeutic strategies. Here, we aimed to dissect CC subtype-specific methylation instability to understand underlying mechanisms and functions. Methods We have assessed genome-wide DNA methylation in the healthy normal colon mucosa (HNM), precursor lesions and CCs in a first comprehensive study to delineate epigenetic change along the process of colon carcinogenesis. Mechanistically, we used stable cell lines, genetically engineered mouse model of mutant BRAFV600E and molecular biology analysis to establish the role of BRAFV600E-mediated-TET inhibition in CpG-island methylator phenotype (CIMP) inititation. Results We identified two distinct patterns of CpG methylation instability, determined either by age–lifestyle (CC-neutral CpGs) or genetically (CIMP-CpGs). CC-neutral-CpGs showed age-de...

Research paper thumbnail of SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation

The EMBO Journal, 2018

During active DNA demethylation, 5-methylcytosine (5mC) is oxidized by TET proteins to 5-formyl-/... more During active DNA demethylation, 5-methylcytosine (5mC) is oxidized by TET proteins to 5-formyl-/5-carboxylcytosine (5fC/5caC) for replacement by unmethylated C by TDG-initiated DNA base excision repair (BER). Base excision generates fragile abasic sites (AP-sites) in DNA and has to be coordinated with subsequent repair steps to limit accumulation of genome destabilizing secondary DNA lesions. Here, we show that 5fC/5caC is generated at a high rate in genomes of differentiating mouse embryonic stem cells and that SUMOylation and the BER protein XRCC1 play critical roles in orchestrating TDG-initiated BER of these lesions. SUMOylation of XRCC1 facilitates physical interaction with TDG and promotes the assembly of a TDG-BER core complex. Within this TDG-BERosome, SUMO is transferred from XRCC1 and coupled to the SUMO acceptor lysine in TDG, promoting its dissociation while assuring the engagement of the BER machinery to complete demethylation. Although well-studied, the biological importance of TDG SUMOylation has remained obscure. Here, we demonstrate that SUMOylation of TDG suppresses DNA strand-break accumulation and toxicity to PARP inhibition in differentiating mESCs and is essential for neural lineage commitment.

Research paper thumbnail of 3CAPS - a structural AP-site analogue as a tool to investigate DNA base excision repair

Nucleic acids research, Jan 4, 2016

Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as in... more Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP-sites. With its 3'-phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5'-deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, und...

Research paper thumbnail of Base Excision by Thymine DNA Glycosylase Mediates DNA-Directed Cytotoxicity of 5-Fluorouracil

Research paper thumbnail of The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs

Nucleic Acids Research, 2003

Human thymine-DNA glycosylase (TDG) is well known to excise thymine and uracil from G´T and G´U m... more Human thymine-DNA glycosylase (TDG) is well known to excise thymine and uracil from G´T and G´U mismatches, respectively, and was therefore proposed to play a central role in the cellular defense against genetic mutation through spontaneous deamination of 5-methylcytosine and cytosine. In this study, we characterized two newly discovered orthologs of TDG, the Drosophila melanogaster Thd1p and the Schizosaccharomyces pombe Thp1p proteins, with an objective to address the function of this subfamily of uracil-DNA glycosylases from an evolutionary perspective. A systematic biochemical comparison of both enzymes with human TDG revealed a number of biologically signi®cant facts. (i) All eukaryotic TDG orthologs have broad and species-speci®c substrate spectra that include a variety of damaged pyrimidine and purine bases; (ii) the common most ef®ciently processed substrates of all are uracil and 3,N4ethenocytosine opposite guanine and 5-¯uorouracil in any double-stranded DNA context; (iii) 5-methylcytosine and thymine derivatives are processed with an appreciable ef®ciency only by the human and the Drosophila enzymes; (iv) none of the proteins is able to hydrolyze a non-damaged 5¢-methylcytosine opposite G; and (v) the double strand and mismatch dependency of the enzymes varies with the substrate and is not a stringent feature of this subfamily of DNA glycosylases. These ®ndings advance our current view on the role of TDG proteins and document that they have evolved with high structural exibility to counter a broad range of DNA base damage in accordance with the speci®c needs of individual species.

Research paper thumbnail of T:G mismatch-specific thymine-DNA glycosylase (TDG) as a coregulator of transcription interacts with SRC1 family members through a novel tyrosine repeat motif

Nucleic Acids Research, 2005

Research paper thumbnail of Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2

Nucleic Acids Research, 2007

Research paper thumbnail of Identification of hMutLbeta , a Heterodimer of hMLH1 and hPMS1

Journal of Biological Chemistry, 1999

Research paper thumbnail of Separating Substrate Recognition from Base Hydrolysis in Human Thymine DNA Glycosylase by Mutational Analysis

Journal of Biological Chemistry, 2000

Research paper thumbnail of Biochemical Characterization of Uracil Processing Activities in the Hyperthermophilic Archaeon Pyrobaculum aerophilum

Journal of Biological Chemistry, 2001

Research paper thumbnail of DNA glycosylases: in DNA repair and beyond

Research paper thumbnail of Extremely low-frequency magnetic fields and risk of childhood leukemia: A risk assessment by the ARIMMORA consortium

Bioelectromagnetics, 2016

Exposure to extremely low-frequency magnetic fields (ELF-MF) was evaluated in an International Ag... more Exposure to extremely low-frequency magnetic fields (ELF-MF) was evaluated in an International Agency for Research on Cancer (IARC) Monographs as "possibly carcinogenic to humans" in 2001, based on increased childhood leukemia risk observed in epidemiological studies. We conducted a hazard assessment using available scientific evidence published before March 2015, with inclusion of new research findings from the Advanced Research on Interaction Mechanisms of electroMagnetic exposures with Organisms for Risk Assessment (ARIMMORA) project. The IARC Monograph evaluation scheme was applied to hazard identification. In ARIMMORA for the first time, a transgenic mouse model was used to mimic the most common childhood leukemia: new pathogenic mechanisms were indicated, but more data are needed to draw definitive conclusions. Although experiments in different animal strains showed exposure-related decreases of CD8+ T-cells, a role in carcinogenesis must be further established. No direct damage of DNA by exposure was observed. Overall in the literature, there is limited evidence of carcinogenicity in humans and inadequate evidence of carcinogenicity in experimental animals, with only weak supporting evidence from mechanistic studies. New exposure data from ARIMMORA confirmed that if the association is nevertheless causal, up to 2% of childhood leukemias in Europe, as previously estimated, may be attributable to ELF-MF. In summary, ARIMMORA concludes that the relationship between ELF-MF and childhood leukemia remains consistent with possible carcinogenicity in humans. While this scientific uncertainty is dissatisfactory for science and public health, new mechanistic insight from ARIMMORA experiments points to future research that could provide a step-change in future assessments. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc.

Research paper thumbnail of Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4

The EMBO Journal, 1998

Saccharomyces cerevisiae DNA ligase IV (LIG4) has been shown previously to be involved in non-hom... more Saccharomyces cerevisiae DNA ligase IV (LIG4) has been shown previously to be involved in non-homologous DNA end joining and meiosis. The homologous mammalian DNA ligase IV interacts with XRCC4, a protein implicated in V(D)J recombination and doublestrand break repair. Here, we report the discovery of LIF1, a S.cerevisiae protein that strongly interacts with the C-terminal BRCT domain of yeast LIG4. LIG4 and LIF1 apparently occur as a heterodimer in vivo. LIF1 shares limited sequence homology with mammalian XRCC4. Disruption of the LIF1 gene abolishes the capacity of cells to recircularize transformed linearized plasmids correctly by non-homologous DNA end joining. Loss of LIF1 is also associated with conditional hypersensitivity of cells to ionizing irradiation and with reduced sporulation efficiency. Thus, with respect to their phenotype, lif1 strains are similar to the previously described lig4 mutants. One function of LIF1 is the stabilization of the LIG4 enzyme. The finding of a XRCC4 homologue in S.cerevisiae now allows for mutational analyses of structure-function relationships in XRCC4-like proteins to define their role in DNA double-strand break repair.

Research paper thumbnail of DNA repair and the control of DNA methylation

The successful establishment and stable maintenance of cell identity are critical for organismal ... more The successful establishment and stable maintenance of cell identity are critical for organismal development and tissue homeostasis. Cell identity is provided by epigenetic mechanisms that facilitate a selective readout of the genome. Operating at the level of chromatin, they establish defined gene expression programs during cell differentiation. Among the epigenetic modifications in mammalian chromatin, the 5'-methylation of cytosine in CpG dinucleotides is unique in that it affects the DNA rather than histones and the biochemistry of the DNA methylating enzymes offers a mechanistic explanation for stable inheritance. Yet, DNA methylation states appear to be more dynamic and their maintenance more complex than existing models predict. Also, methylation patterns are by far not always faithfully inherited, as best exemplified by human cancers. Often, these show widespread hypo- or hypermethylation across their genomes, reflecting an underlying epigenetic instability that may have...

Research paper thumbnail of Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer

BACKGROUND & AIMS Germline mutations in the DNA mismatch repair (MMR) genes MSH2, MSH6, or MLH1 p... more BACKGROUND & AIMS Germline mutations in the DNA mismatch repair (MMR) genes MSH2, MSH6, or MLH1 predispose to colorectal cancer (CRC) with an autosomal dominant inheritance pattern. The protein encoded by PMS2 is also essential for MMR; however, alterations in this gene have been documented only in extremely rare cases. We addressed this unexpected finding by analyzing a large series of CRCs. METHODS Expression of MSH2, MSH6, MLH1, and PMS2 was studied by immunohistochemistry in 1048 unselected, consecutive CRCs. Where absence of MMR proteins was detected, microsatellite instability and cytosine methylation of the respective gene promoter were analyzed. The DNA of patients presenting with PMS2-deficient cancers was examined for germline and somatic alterations in the PMS2 gene. RESULTS An aberrant pattern of MMR protein expression was detected in 13.2% of CRCs. Loss of expression of MSH2, MSH6, or MLH1 was found in 1.4%, 0.5%, and 9.8%, respectively. PMS2 deficiency accompanied by m...

Research paper thumbnail of Mismatch Repair in Schizosacchromyces pombe Requires the mutL Homologous Gene pms1: Molecular Cloning and Functional Analysis

Genetics

Homologues of the bacterial mutS and mutL genes involved in DNA mismatch repair have been found i... more Homologues of the bacterial mutS and mutL genes involved in DNA mismatch repair have been found in organisms from bacteria to humans. Here, we describe the structure and function of a newly identified Schizosaccharomyces pombe gene that encodes a predicted amino acid sequence of 794 residues with a high degree of homology to MutL related proteins. On the basis of its closer relationship to the eukaryotic “PMS” genes than to the “MLH” genes, we have designated the S. pombe homologue pms1. Disruption of the pms1 gene causes a significant increase of spontaneous mutagenesis as documented by reversion rate measurements. Tetrad analyses of crosses homozygous for the pms1 mutation reveal a reduction of spore viability from >92% to 80% associated with a low proportion (∼50%) of meioses producing four viable spores and a significant, allele-dependent increase of the level of post-meiotic segregation of genetic marker allele pairs. The mutant phenotypes are consistent with a general funct...

Research paper thumbnail of Longitudinal analysis of healthy colon establishes aspirin as a suppressor of cancer-related epigenetic aging

Clinical Epigenetics

Background Colon cancer (CC) is the third most common cancer worldwide, highlighting the importan... more Background Colon cancer (CC) is the third most common cancer worldwide, highlighting the importance of developing effective prevention strategies. Accumulating evidence supports that aspirin use reduces CC incidence. We reported previously that aspirin suppresses age-associated and CC-relevant DNA methylation (DNAm) in healthy colon. Here we addressed the aspirin’s effectiveness in longitudinal cohort. Methods We measured genome-wide DNAm in 124 healthy normal mucosa samples taken at baseline (time point 1, t1) and after 10-years follow-up (time point 2, t2) from a longitudinal female screening cohort. We investigated the time-dependent methylation drift in aspirin users and nonusers using multivariable regression and related the modulatory effect of aspirin to colonic epigenome-aging and CC. Results Over time, compared to nonusers, long-term (≥ 2 years) aspirin users showed less hypermethylated CpGs (proximal: 17% vs. 87%; distal: 16% vs. 70%) and more hypomethylated CpGs (proximal...

Research paper thumbnail of Inducible TDG knockout models to study epigenetic regulation

F1000Research

Mechanistic and functional studies by gene disruption or editing approaches often suffer from con... more Mechanistic and functional studies by gene disruption or editing approaches often suffer from confounding effects like compensatory cellular adaptations generated by clonal selection. These issues become particularly relevant when studying factors directly involved in genetic or epigenetic maintenance. To provide a genetic tool for functional and mechanistic investigation of DNA-repair mediated active DNA demethylation, we generated experimental models in mice and murine embryonic stem cells (ESCs) based on a minigene of the thymine-DNA glycosylase (TDG). The loxP-flanked miniTdg is rapidly and reliably excised in mice and ESCs by tamoxifen-induced Cre activation, depleting TDG to undetectable levels within 24 hours. We describe the functionality of the engineered miniTdg in mouse and ESCs (TDGiKO ESCs) and validate the pluripotency and differentiation potential of TDGiKO ESCs as well as the phenotype of induced TDG depletion. The controlled and rapid depletion of TDG allows for a p...