Letizia Bernardo | University of Calabria (original) (raw)

Papers by Letizia Bernardo

Research paper thumbnail of Comparison of proteome response to saline and zinc stress in lettuce

Frontiers in Plant Science, 2015

Zinc salts occurring in soils can exert an osmotic stress toward plants. However, being zinc a he... more Zinc salts occurring in soils can exert an osmotic stress toward plants. However, being zinc a heavy metal, some more specific effects on plant metabolisms can be forecast. In this work, lettuce has been used as a model to investigate salt and zinc stresses at proteome level through a shotgun tandem MS proteomic approach. The effect of zinc stress in lettuce, in comparison with NaCl stress, was evaluated to dissect between osmotic/oxidative stress related effects, from those changes specifically related to zinc. The analysis of proteins exhibiting a fold change of 3 as minimum (on log 2 normalized abundances), revealed the involvement of photosynthesis (via stimulation of chlorophyll synthesis and enhanced role of photosystem I) as well as stimulation of photophosphorylation. Increased glycolytic supply of energy substrates and ammonium assimilation [through formation of glutamine synthetase (GS)] were also induced by zinc in soil. Similarly, protein metabolism (at both transcriptional and ribosomal level), heat shock proteins, and proteolysis were affected. According to their biosynthetic enzymes, hormones appear to be altered by both the treatment and the time point considered: ethylene biosynthesis was enhanced, while production of abscisic acid was up-regulated at the earlier time point to decrease markedly and gibberellins were decreased at the later one. Besides aquaporin PIP2 synthesis, other osmotic/oxidative stress related compounds were enhanced under zinc stress, i.e., proline, hydroxycinnamic acids, ascorbate, sesquiterpene lactones, and terpenoids biosynthesis. Although the proteins involved in the response to zinc stress and to salinity were substantially the same, their abundance changed between the two treatments. Lettuce response to zinc was more prominent at the first sampling point, yet showing a faster adaptation than under NaCl stress. Indeed, lettuce plants showed an adaptation after 30 days of stress, in a more pronounced way in the case of zinc.

Research paper thumbnail of Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

Frontiers in Plant Science, 2013

For seagrasses, seasonal and daily variations in light and temperature represent the mains factor... more For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.

Research paper thumbnail of The Citrus clementina Putative Allergens: From Proteomic Analysis to Structural Features

Journal of Agricultural and Food Chemistry, 2013

Several allergens have been identified and characterized in the genus Citrus, which belongs to th... more Several allergens have been identified and characterized in the genus Citrus, which belongs to the germin-like proteins (GPLs), profilins, and non-specific lipid transfer proteins (nsLTPs). In this work, in silico sequence analysis, protein purification, mass spectrometry identification, and the spectral counting method were integrated to identify new putative allergens of Citrus clementina and their expression level in the fruit peel. The in silico analysis revealed fifteen new sequences belonging to GLPs (Cit cl 1), and two more belonging to nsLTPs (Cit cl 3). No other new sequences were found as regards profilins (Cit cl 2). Each putative allergen from fruit peel was obtained using different protein extraction methods, and the protein sequences of the putative allergens were identified by means of LTQ-Orbitrap XL mass spectrometer. The spectral counting strategy revealed that Cit cl 1 had a higher expression level than Cit cl 2 and Cit cl 3. To predict the quaternary structure and deduced function of Cit cl 1, its primary sequence was used as a template to search a homologous protein structure in the RCSB PDB Database, getting high correspondence with the oxalate oxidase protein in barley.

Research paper thumbnail of On the complexity of miRNA-mediated regulation in plants: novel insights into the genomic organization of plant miRNAs

Biology Direct, 2012

MicroRNAs (miRNAs) are endogenous small non-coding RNAs of about 20-24 nt, known to play key role... more MicroRNAs (miRNAs) are endogenous small non-coding RNAs of about 20-24 nt, known to play key roles in post-transcriptional gene regulation, that can be coded either by intergenic or intragenic loci. Intragenic (exonic and intronic) miRNAs can exert a role in the transcriptional regulation and RNA processing of their host gene. Moreover, the possibility that the biogenesis of exonic miRNAs could destabilize the corresponding protein-coding transcript and reduce protein synthesis makes their characterization very intriguing and suggests a possible novel mechanism of post-transcriptional regulation of gene expression.

Research paper thumbnail of Identification and mapping of the leaf stripe resistance gene Rdg1a in Hordeum spontaneum

Theoretical and applied …, 2010

Leaf stripe of barley, caused by Pyrenophora graminea, is an important seed-borne disease in orga... more Leaf stripe of barley, caused by Pyrenophora graminea, is an important seed-borne disease in organically grown as well as in conventionally grown Nordic and Mediterranean barley districts. Two barley segregating populations represented by 103 recombinant inbred lines (RILs) of the cross L94 (susceptible) £ Vada (resistant) and 194 RILs of the cross Arta (susceptible) £ Hordeum spontaneum 41-1 (resistant) were analysed with two highly virulent leaf stripe isolates, Dg2 and Dg5, to identify loci for P. graminea resistance. A major gene with its positive allele contributed by Vada and H. spontaneum 41-1 was detected in both populations and for both pathogen isolates on chromosome 2HL explaining 44.1 and 91.8% R 2 , respectively for Dg2 and Dg5 in L94 £ Vada and 97.8 and 96.1% R 2 , respectively for Dg2 and Dg5 in Arta £ H. spontaneum 41-1. Common markers in the gene region of the two populations enabled map comparison and highlighted an overlapping for the region of the resistance locus. Since the map position of the resistance locus identiWed in this report is the same as that for the leaf stripe resistance gene Rdg1a, mapped earlier in Alf and derived from the 'botanical' barley line H. laevigatum, we propose that leaf stripe resistance in Vada and H. spontaneum 41-1 is governed by the same gene, namely by Rdg1a, and that Rdg1a resistance could be traced back to H. spontaneum, the progenitor of cultivated barley. PCR-based molecular markers that can be used for marker-assisted selection (MAS) of Rdg1a were identiWed. An Rdg1a syntenic interval with the rice chromosome arm 4L was identiWed on the basis of rice orthologs of EST-based barley markers. Analysis of the rice genes annotated into the syntenic interval did not reveal sequences strictly belonging to the major class (nucleotidebinding site plus leucine-rich repeat) of the resistance genes. Nonetheless, four genes coding for domains that are present in the major disease-resistance genes, namely receptor-like protein kinase and ATP/GTP-binding proteins, were identiWed together with a homolog of the barley powdery mildew resistance gene mlo. Three (out of Wve) homologs of these genes were mapped in the Rdg1a region in barley and the mlo homolog map position was tightly associated with the LOD score peak in both populations. Communicated by B. Keller.

Research paper thumbnail of Multiple von Willebrand factor mutations in patients with recessive type 1 von Willebrand disease

Research paper thumbnail of On the complexity of miRNA-mediated regulation in plants: novel insights into the genomic organization of plant miRNAs

Biology …, 2012

MicroRNAs (miRNAs) are endogenous small non-coding RNAs of about 20-24 nt, known to play key role... more MicroRNAs (miRNAs) are endogenous small non-coding RNAs of about 20-24 nt, known to play key roles in post-transcriptional gene regulation, that can be coded either by intergenic or intragenic loci. Intragenic (exonic and intronic) miRNAs can exert a role in the transcriptional regulation and RNA processing of their host gene. Moreover, the possibility that the biogenesis of exonic miRNAs could destabilize the corresponding protein-coding transcript and reduce protein synthesis makes their characterization very intriguing and suggests a possible novel mechanism of post-transcriptional regulation of gene expression. This work was designed to carry out the computational identification of putative exonic miRNAs in 30 plant species and the analysis of possible mechanisms involved in their regulation. The results obtained represent a useful starting point for future studies on the complex networks involved in microRNA-mediated gene regulation in plants.

Research paper thumbnail of A survey of microRNA length variants contributing to miRNome complexity in peach (Prunus persica L

Frontiers in Plant …, 2012

MicroRNAs (miRNAs) are short non-coding RNA molecules produced from hairpin structures and involv... more MicroRNAs (miRNAs) are short non-coding RNA molecules produced from hairpin structures and involved in gene expression regulation with major roles in plant development and stress response. Although each annotated miRNA in miRBase (www.mirbase.org) is a single defined sequence with no further details on possible variable sequence length, isomiRs – namely the population of variants of miRNAs coming from the same precursors – have been identified in several species and could represent a way of broadening the regulatory network of the cell. Next-gen-based sequencing makes it possible to comprehensively and accurately assess the entire miRNA repertoire including isomiRs. The aim of this work was to survey the complexity of the peach miRNome by carrying out Illumina high-throughput sequencing of miRNAs in three replicates of five biological samples arising from a set of different peach organs and/or phenological stages. Three hundred-ninety-two isomiRs (miRNA and miRNA*-related) corresponding to 26 putative miRNA coding loci, have been highlighted by mirDeep-P and analyzed. The presence of the same isomiRs in different biological replicates of a sample and in different tissues demonstrates that the generation of most of the detected isomiRs is not random. The degree of mature sequence heterogeneity is very different for each individual locus. Results obtained in the present work can thus contribute to a deeper view of the miRNome complexity and to better explore the mechanism of action of these tiny regulators.

Research paper thumbnail of Proteomic characterization of the Rph15 barley resistance gene-mediated defence responses to leaf rust

BMC genomics, 2012

BackgroundLeaf rust, caused by the biotrophic fungal pathogen Puccinia hordei, is one of the most... more BackgroundLeaf rust, caused by the biotrophic fungal pathogen Puccinia hordei, is one of the most important foliar disease of barley (Hordeum vulgare) and represents a serious threat in many production regions of the world. The leaf rust resistance gene Rph15 is of outstanding interest for resistance breeding because it confers resistance to over 350 Puccinia hordei isolates collected from around the world. Molecular and biochemical mechanisms responsible for the Rph15 effectiveness are currently not investigated. The aim of the present work was to study the Rph15-based defence responses using a proteomic approach.ResultsProtein pattern changes in response to the leaf rust pathogen infection were investigated in two barley near isogenic lines (NILs), Bowman (leaf rust susceptible) and Bowman-Rph15 (leaf rust resistant), differing for the introgression of the leaf rust resistance gene Rph15. Two infection time points, 24 hours and four days post inoculation (dpi), were analysed. No statistically significant differences were identified at the early time point, while at 4 dpi eighteen protein spots were significantly up or down regulated with a fold-change equal or higher than two in response to pathogen infection. Almost all the pathogen-responsive proteins were identified in the Bowman-Rph15 resistant NIL. Protein spots were characterized by LC-MS/MS analysis and found to be involved in photosynthesis and energy metabolism, carbohydrate metabolism, protein degradation and defence. Proteomic data were complemented by transcriptional analysis of the respective genes. The identified proteins can be related to modulation of the photosynthetic apparatus components, re-direction of the metabolism to sustain defence responses and deployment of defence proteins.ConclusionsThe identification of leaf rust infection-modulated defence responses restricted to the resistant NIL support the hypothesis that basal defence responses of Bowman, but not the Rph15 resistance gene-based ones, are suppressed or delayed by pathogen effectors to levels below the detection power of the adopted proteomic approach. Additionally, Rph15-mediated resistance processes identified mainly resides on a modulation of primary metabolism, affecting photosyntesis and carbohydrate pool.

Research paper thumbnail of Comparison of proteome response to saline and zinc stress in lettuce

Frontiers in Plant Science, 2015

Zinc salts occurring in soils can exert an osmotic stress toward plants. However, being zinc a he... more Zinc salts occurring in soils can exert an osmotic stress toward plants. However, being zinc a heavy metal, some more specific effects on plant metabolisms can be forecast. In this work, lettuce has been used as a model to investigate salt and zinc stresses at proteome level through a shotgun tandem MS proteomic approach. The effect of zinc stress in lettuce, in comparison with NaCl stress, was evaluated to dissect between osmotic/oxidative stress related effects, from those changes specifically related to zinc. The analysis of proteins exhibiting a fold change of 3 as minimum (on log 2 normalized abundances), revealed the involvement of photosynthesis (via stimulation of chlorophyll synthesis and enhanced role of photosystem I) as well as stimulation of photophosphorylation. Increased glycolytic supply of energy substrates and ammonium assimilation [through formation of glutamine synthetase (GS)] were also induced by zinc in soil. Similarly, protein metabolism (at both transcriptional and ribosomal level), heat shock proteins, and proteolysis were affected. According to their biosynthetic enzymes, hormones appear to be altered by both the treatment and the time point considered: ethylene biosynthesis was enhanced, while production of abscisic acid was up-regulated at the earlier time point to decrease markedly and gibberellins were decreased at the later one. Besides aquaporin PIP2 synthesis, other osmotic/oxidative stress related compounds were enhanced under zinc stress, i.e., proline, hydroxycinnamic acids, ascorbate, sesquiterpene lactones, and terpenoids biosynthesis. Although the proteins involved in the response to zinc stress and to salinity were substantially the same, their abundance changed between the two treatments. Lettuce response to zinc was more prominent at the first sampling point, yet showing a faster adaptation than under NaCl stress. Indeed, lettuce plants showed an adaptation after 30 days of stress, in a more pronounced way in the case of zinc.

Research paper thumbnail of Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

Frontiers in Plant Science, 2013

For seagrasses, seasonal and daily variations in light and temperature represent the mains factor... more For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.

Research paper thumbnail of The Citrus clementina Putative Allergens: From Proteomic Analysis to Structural Features

Journal of Agricultural and Food Chemistry, 2013

Several allergens have been identified and characterized in the genus Citrus, which belongs to th... more Several allergens have been identified and characterized in the genus Citrus, which belongs to the germin-like proteins (GPLs), profilins, and non-specific lipid transfer proteins (nsLTPs). In this work, in silico sequence analysis, protein purification, mass spectrometry identification, and the spectral counting method were integrated to identify new putative allergens of Citrus clementina and their expression level in the fruit peel. The in silico analysis revealed fifteen new sequences belonging to GLPs (Cit cl 1), and two more belonging to nsLTPs (Cit cl 3). No other new sequences were found as regards profilins (Cit cl 2). Each putative allergen from fruit peel was obtained using different protein extraction methods, and the protein sequences of the putative allergens were identified by means of LTQ-Orbitrap XL mass spectrometer. The spectral counting strategy revealed that Cit cl 1 had a higher expression level than Cit cl 2 and Cit cl 3. To predict the quaternary structure and deduced function of Cit cl 1, its primary sequence was used as a template to search a homologous protein structure in the RCSB PDB Database, getting high correspondence with the oxalate oxidase protein in barley.

Research paper thumbnail of On the complexity of miRNA-mediated regulation in plants: novel insights into the genomic organization of plant miRNAs

Biology Direct, 2012

MicroRNAs (miRNAs) are endogenous small non-coding RNAs of about 20-24 nt, known to play key role... more MicroRNAs (miRNAs) are endogenous small non-coding RNAs of about 20-24 nt, known to play key roles in post-transcriptional gene regulation, that can be coded either by intergenic or intragenic loci. Intragenic (exonic and intronic) miRNAs can exert a role in the transcriptional regulation and RNA processing of their host gene. Moreover, the possibility that the biogenesis of exonic miRNAs could destabilize the corresponding protein-coding transcript and reduce protein synthesis makes their characterization very intriguing and suggests a possible novel mechanism of post-transcriptional regulation of gene expression.

Research paper thumbnail of Identification and mapping of the leaf stripe resistance gene Rdg1a in Hordeum spontaneum

Theoretical and applied …, 2010

Leaf stripe of barley, caused by Pyrenophora graminea, is an important seed-borne disease in orga... more Leaf stripe of barley, caused by Pyrenophora graminea, is an important seed-borne disease in organically grown as well as in conventionally grown Nordic and Mediterranean barley districts. Two barley segregating populations represented by 103 recombinant inbred lines (RILs) of the cross L94 (susceptible) £ Vada (resistant) and 194 RILs of the cross Arta (susceptible) £ Hordeum spontaneum 41-1 (resistant) were analysed with two highly virulent leaf stripe isolates, Dg2 and Dg5, to identify loci for P. graminea resistance. A major gene with its positive allele contributed by Vada and H. spontaneum 41-1 was detected in both populations and for both pathogen isolates on chromosome 2HL explaining 44.1 and 91.8% R 2 , respectively for Dg2 and Dg5 in L94 £ Vada and 97.8 and 96.1% R 2 , respectively for Dg2 and Dg5 in Arta £ H. spontaneum 41-1. Common markers in the gene region of the two populations enabled map comparison and highlighted an overlapping for the region of the resistance locus. Since the map position of the resistance locus identiWed in this report is the same as that for the leaf stripe resistance gene Rdg1a, mapped earlier in Alf and derived from the 'botanical' barley line H. laevigatum, we propose that leaf stripe resistance in Vada and H. spontaneum 41-1 is governed by the same gene, namely by Rdg1a, and that Rdg1a resistance could be traced back to H. spontaneum, the progenitor of cultivated barley. PCR-based molecular markers that can be used for marker-assisted selection (MAS) of Rdg1a were identiWed. An Rdg1a syntenic interval with the rice chromosome arm 4L was identiWed on the basis of rice orthologs of EST-based barley markers. Analysis of the rice genes annotated into the syntenic interval did not reveal sequences strictly belonging to the major class (nucleotidebinding site plus leucine-rich repeat) of the resistance genes. Nonetheless, four genes coding for domains that are present in the major disease-resistance genes, namely receptor-like protein kinase and ATP/GTP-binding proteins, were identiWed together with a homolog of the barley powdery mildew resistance gene mlo. Three (out of Wve) homologs of these genes were mapped in the Rdg1a region in barley and the mlo homolog map position was tightly associated with the LOD score peak in both populations. Communicated by B. Keller.

Research paper thumbnail of Multiple von Willebrand factor mutations in patients with recessive type 1 von Willebrand disease

Research paper thumbnail of On the complexity of miRNA-mediated regulation in plants: novel insights into the genomic organization of plant miRNAs

Biology …, 2012

MicroRNAs (miRNAs) are endogenous small non-coding RNAs of about 20-24 nt, known to play key role... more MicroRNAs (miRNAs) are endogenous small non-coding RNAs of about 20-24 nt, known to play key roles in post-transcriptional gene regulation, that can be coded either by intergenic or intragenic loci. Intragenic (exonic and intronic) miRNAs can exert a role in the transcriptional regulation and RNA processing of their host gene. Moreover, the possibility that the biogenesis of exonic miRNAs could destabilize the corresponding protein-coding transcript and reduce protein synthesis makes their characterization very intriguing and suggests a possible novel mechanism of post-transcriptional regulation of gene expression. This work was designed to carry out the computational identification of putative exonic miRNAs in 30 plant species and the analysis of possible mechanisms involved in their regulation. The results obtained represent a useful starting point for future studies on the complex networks involved in microRNA-mediated gene regulation in plants.

Research paper thumbnail of A survey of microRNA length variants contributing to miRNome complexity in peach (Prunus persica L

Frontiers in Plant …, 2012

MicroRNAs (miRNAs) are short non-coding RNA molecules produced from hairpin structures and involv... more MicroRNAs (miRNAs) are short non-coding RNA molecules produced from hairpin structures and involved in gene expression regulation with major roles in plant development and stress response. Although each annotated miRNA in miRBase (www.mirbase.org) is a single defined sequence with no further details on possible variable sequence length, isomiRs – namely the population of variants of miRNAs coming from the same precursors – have been identified in several species and could represent a way of broadening the regulatory network of the cell. Next-gen-based sequencing makes it possible to comprehensively and accurately assess the entire miRNA repertoire including isomiRs. The aim of this work was to survey the complexity of the peach miRNome by carrying out Illumina high-throughput sequencing of miRNAs in three replicates of five biological samples arising from a set of different peach organs and/or phenological stages. Three hundred-ninety-two isomiRs (miRNA and miRNA*-related) corresponding to 26 putative miRNA coding loci, have been highlighted by mirDeep-P and analyzed. The presence of the same isomiRs in different biological replicates of a sample and in different tissues demonstrates that the generation of most of the detected isomiRs is not random. The degree of mature sequence heterogeneity is very different for each individual locus. Results obtained in the present work can thus contribute to a deeper view of the miRNome complexity and to better explore the mechanism of action of these tiny regulators.

Research paper thumbnail of Proteomic characterization of the Rph15 barley resistance gene-mediated defence responses to leaf rust

BMC genomics, 2012

BackgroundLeaf rust, caused by the biotrophic fungal pathogen Puccinia hordei, is one of the most... more BackgroundLeaf rust, caused by the biotrophic fungal pathogen Puccinia hordei, is one of the most important foliar disease of barley (Hordeum vulgare) and represents a serious threat in many production regions of the world. The leaf rust resistance gene Rph15 is of outstanding interest for resistance breeding because it confers resistance to over 350 Puccinia hordei isolates collected from around the world. Molecular and biochemical mechanisms responsible for the Rph15 effectiveness are currently not investigated. The aim of the present work was to study the Rph15-based defence responses using a proteomic approach.ResultsProtein pattern changes in response to the leaf rust pathogen infection were investigated in two barley near isogenic lines (NILs), Bowman (leaf rust susceptible) and Bowman-Rph15 (leaf rust resistant), differing for the introgression of the leaf rust resistance gene Rph15. Two infection time points, 24 hours and four days post inoculation (dpi), were analysed. No statistically significant differences were identified at the early time point, while at 4 dpi eighteen protein spots were significantly up or down regulated with a fold-change equal or higher than two in response to pathogen infection. Almost all the pathogen-responsive proteins were identified in the Bowman-Rph15 resistant NIL. Protein spots were characterized by LC-MS/MS analysis and found to be involved in photosynthesis and energy metabolism, carbohydrate metabolism, protein degradation and defence. Proteomic data were complemented by transcriptional analysis of the respective genes. The identified proteins can be related to modulation of the photosynthetic apparatus components, re-direction of the metabolism to sustain defence responses and deployment of defence proteins.ConclusionsThe identification of leaf rust infection-modulated defence responses restricted to the resistant NIL support the hypothesis that basal defence responses of Bowman, but not the Rph15 resistance gene-based ones, are suppressed or delayed by pathogen effectors to levels below the detection power of the adopted proteomic approach. Additionally, Rph15-mediated resistance processes identified mainly resides on a modulation of primary metabolism, affecting photosyntesis and carbohydrate pool.