Robson Tramontina | Universidade Estadual de Campinas (original) (raw)

Papers by Robson Tramontina

Research paper thumbnail of SUPPLEMENTARY MATERIAL Designing cocktail containing redox enzymes to improve hemicellulosic hydrolysate fermentability by microorganisms

Research paper thumbnail of Designing a cocktail containing redox enzymes to improve hemicellulosic hydrolysate fermentability by microorganisms

Enzyme and Microbial Technology , 2019

Bioproducts production using monomeric sugars derived from lignocellulosic biomass presents sever... more Bioproducts production using monomeric sugars derived from lignocellulosic biomass presents several challenges , such as to require a physicochemical pretreatment to improve its conversion yields. Hydrothermal ligno-cellulose pretreatment has several advantages and results in solid and liquid streams. The former is called hemi-cellulosic hydrolysate (HH), which contains inhibitory phenolic compounds and sugar degradation products that hinder microbial fermentation products from pentose sugars. Here, we developed and applied a novel enzyme process to detoxify HH. Initially, the design of experiments with different redox activities enzymes was carried out. The enzyme mixture containing the peroxidase (from Armoracia rusticana) together with superoxide dismu-tase (from Coptotermes gestroi) are the most effective to detoxify HH derived from sugarcane bagasse. Butanol fermentation by the bacteria Clostridium saccharoperbutylacetonicum and ethanol production by the yeast Scheffer-somyces stipitis increased by 24.0× and 2.4×, respectively, relative to the untreated hemicellulosic hydrolysates. Detoxified HH was analyzed by chromatographic and spectrometric methods elucidating the mechanisms of phe-nolic compound modifications by enzymatic treatment. The enzyme mixture degraded and reduced the hydrox-yphenyl-and feruloyl-derived units and polymerized the lignin fragments. This strategy uses biocatalysts under environmentally friendly conditions and could be applied in the fuel, food, and chemical industries.

Research paper thumbnail of Exopolysaccharides from Aspergillus terreus: Production, chemical elucidation and immunoactivity

International Journal of Biological Macromolecules, 2019

Aspergillus terreus, a fungus commonly used in pharmaceutical industry to produce lovastatin and ... more Aspergillus terreus, a fungus commonly used in pharmaceutical industry to produce lovastatin and other secondary metabolites, has been reported to have beneficial biological properties. In this study the exopolysaccharides (AT-EPS) produced by A. terreus were evaluated as potential modulators of certain functions of macrophages. The production parameters for EPS obtained from the liquid culture broth of the studied fungus were optimized using response surface methodology (RSM) and indicated good correlation between the experimental and predicted values. The optimum conditions for AT-EPS extraction included fermentation at 28 °C, pH 8.79, under 98 rpm of agitation, using 2.39% glucose (carbon source) and 0.957% ammonium nitrate (nitrogen source). Under these optimized conditions, AT-EPS production was 1.34 g/L medium. The chemical analyses showed that AT-EPS was composed by mannose (Man; 40.5 mol%), galactose (Gal; 35.2 mol%), and glucose (Glc; 24.3 mol%), and the spectroscopic (FTIR; NMR) and methylation analyses indicated the presence of galactomannans, β-1,3-glucans, and glycogen-like glucans. AT-EPS was tested on murine macrophages to verify its immunoactivity and the treated cells were able to produce nitric oxide, superoxide anion, TNF-α and interleukin 6 similarly to the positive control cells. Furthermore, the macrophages treated with AT-EPS showed activated-like morphological alterations.

Research paper thumbnail of Consolidated production of coniferol and other high-value aromatic alcohols directly from lignocellulosic biomass

Green Chemistry, 2019

Sustainable production of fine chemicals and biofuels from renewable biomass offers a potential a... more Sustainable production of fine chemicals and biofuels from renewable biomass offers a potential alternative to the continued use of finite geological oil reserves. However, in order to compete with current petrochemical refinery processes, alternative biorefinery processes must overcome significant costs and productivity barriers. Herein, we demonstrate the biocatalytic production of the versatile chemical building block, coniferol, directly from lignocellulosic biomass. Following the biocatalytic treatment of lignocellulose to release and convert ferulic acid with feruloyl esterase (XynZ), carboxylic acid reductase (CAR) and aldo-keto reductase (AKR), this whole cell catalytic cascade not only achieved equivalent release of ferulic acid from lignocellulose compared to alkaline hydrolysis, but also displayed efficient conversion of ferulic acid to coniferol. This system represents a consolidated biodegradation-biotransformation strategy for the production of high value fine chemicals from waste plant biomass, offering the potential to minimize environmental waste and add value to agro-industrial residues.

Research paper thumbnail of Consolidated production of coniferol and other high-value aromatic alcohols directly from lignocellulosic biomass

GreenChemistry, 2019

Sustainable production of fine chemicals and biofuels from renewable biomass offers a potential a... more Sustainable production of fine chemicals and biofuels from renewable biomass offers a potential alternative to the continued use of finite geological oil reserves. However, in order to compete with current petrochemical refinery processes, alternative biorefinery processes must overcome significant costs and productivity barriers. Herein, we demonstrate the biocatalytic production of the versatile chemical building block, coniferol, directly from lignocellulosic biomass. Following the biocatalytic treatment of lignocellulose to release and convert ferulic acid with feruloyl esterase (XynZ), carboxylic acid reductase (CAR) and aldo-keto reductase (AKR), this whole cell catalytic cascade not only achieved equivalent release of ferulic acid from lignocellulose compared to alkaline hydrolysis, but also displayed efficient conversion of ferulic acid to coniferol. This system represents a consolidated biodegradation-biotransformation strategy for the production of high value fine chemicals from waste plant biomass, offering the potential to minimize environmental waste and add value to agro-industrial residues.

Research paper thumbnail of Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility

Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to e... more Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identified within the BAHD acyl-CoA transferase family. We used RNA interference (RNAi) silencing of orthologs in the model grasses Setaria viridis (SvBAHD01) and Brachypodium distachyon (BdBAHD01) and determined effects on AX fer-uloylation. Silencing of SvBAHD01 in Setaria resulted in a c. 60% decrease in AX feruloylation in stems consistently across four generations. Silencing of BdBAHD01 in Brachypodium stems decreased feruloylation much less, possibly due to higher expression of functionally redundant genes. Setaria SvBAHD01 RNAi plants showed: no decrease in total lignin, approximately doubled arabinose acylated by p-coumarate, changes in two-dimensional NMR spectra of unfractionated cell walls consistent with biochemical estimates, no effect on total biomass production and an increase in biomass saccharification efficiency of 40–60%. We provide the first strong evidence for a key role of the BAHD01 gene in AX feruloylation and demonstrate that it is a promising target for improvement of grass crops for biofuel, biorefining and animal nutrition applications.

Research paper thumbnail of The Coptotermes gestroi aldo-keto reductase: a multipurpose enzyme for biorefinery applications

Biotechnology for biofuels, 2017

In nature, termites can be considered as a model biological system for biofuel research based on ... more In nature, termites can be considered as a model biological system for biofuel research based on their remarkable efficiency for lignocellulosic biomass conversion. Redox enzymes are of interest in second-generation ethanol production because they promote synergic enzymatic activity with classical hydrolases for lignocellulose saccharification and inactivate fermentation inhibitory compounds produced after lignocellulose pretreatment steps. In the present study, the biochemical and structural characteristics of the Coptotermes gestroi aldo-keto reductase (CgAKR-1) were comprehensively investigated. CgAKR-1 displayed major structural differences compared with others AKRs, including the differences in the amino acid composition of the substrate-binding site, providing basis for classification as a founding member of a new AKR subfamily (family AKR1 I). Immunolocalization assays with anti-CgAKR-1 antibodies resulted in strong fluorescence in the salivary gland, proventriculus, and fore...

Research paper thumbnail of Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility

Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to e... more Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identified within the BAHD acyl-CoA transferase family. We used RNA interference (RNAi) silencing of orthologs in the model grasses Setaria viridis (SvBAHD01) and Brachypodium distachyon (BdBAHD01) and determined effects on AX fer-uloylation. Silencing of SvBAHD01 in Setaria resulted in a c. 60% decrease in AX feruloylation in stems consistently across four generations. Silencing of BdBAHD01 in Brachypodium stems decreased feruloylation much less, possibly due to higher expression of functionally redundant genes. Setaria SvBAHD01 RNAi plants showed: no decrease in total lignin, approximately doubled arabinose acylated by p-coumarate, changes in two-dimensional NMR spectra of unfractionated cell walls consistent with biochemical estimates, no effect on total biomass production and an increase in biomass saccharification efficiency of 40–60%. We provide the first strong evidence for a key role of the BAHD01 gene in AX feruloylation and demonstrate that it is a promising target for improvement of grass crops for biofuel, biorefining and animal nutrition applications.

Research paper thumbnail of Cooperation of Aspergillus nidulans enzymes increases plant polysaccharide saccharification

Biotechnology journal, Jan 5, 2016

Efficient polysaccharide degradation depends on interaction between enzymes acting on the main ch... more Efficient polysaccharide degradation depends on interaction between enzymes acting on the main chain and the side chains. Previous studies demonstrated cooperation between several enzymes, but not all enzyme combinations have been explored. A better understanding of enzyme cooperation would enable the design of better enzyme mixtures, optimally profiting from synergistic effects. In this study, we analyzed the cooperation of several enzymes involved in the degradation of xylan, glucan, xyloglucan and crude plant biomass from Aspergillus nidulans by single and combined incubations with their polymeric substrate. Positive effects were observed between most enzymes, although not always to the same extent. Moreover, the tailor made cocktails formulated in this study resulted in efficient release of glucose from plant biomass. This study also serves as an example for the complex cooperation that occurs between enzymes in plant biomass saccharification and how expression in easily-accessi...

Research paper thumbnail of Expanding the Knowledge on Lignocellulolytic and Redox Enzymes of Worker and Soldier Castes from the Lower Termite Coptotermes gestroi

Frontiers in microbiology, 2016

Termites are considered one of the most efficient decomposers of lignocelluloses on Earth due to ... more Termites are considered one of the most efficient decomposers of lignocelluloses on Earth due to their ability to produce, along with its microbial symbionts, a repertoire of carbohydrate-active enzymes (CAZymes). Recently, a set of Pro-oxidant, Antioxidant, and Detoxification enzymes (PAD) were also correlated with the metabolism of carbohydrates and lignin in termites. The lower termite Coptotermes gestroi is considered the main urban pest in Brazil, causing damage to wood constructions. Recently, analysis of the enzymatic repertoire of C. gestroi unveiled the presence of different CAZymes. Because the gene profile of CAZy/PAD enzymes endogenously synthesized by C. gestroi and also by their symbiotic protists remains unclear, the aim of this study was to explore the eukaryotic repertoire of these enzymes in worker and soldier castes of C. gestroi. Our findings showed that worker and soldier castes present similar repertoires of CAZy/PAD enzymes, and also confirmed that endo-glucan...

Research paper thumbnail of Biochemical and biophysical properties of a metagenome-derived GH5 endoglucanase displaying an unconventional domain architecture

International Journal of Biological Macromolecules

Endoglucanases are key enzymes in the degradation of cellulose, the most abundant polymer on Eart... more Endoglucanases are key enzymes in the degradation of cellulose, the most abundant polymer on Earth. The aim of this work was to perform the biochemical and biophysical characterization of CelE2, a soil metagenome derived endoglucanase. CelE2 harbors a conserved domain from glycoside hydrolase family 5 (GH5) and a C-terminal domain with identity to Calx-beta domains. The recombinant CelE2 displayed preference for hydrolysis of oat beta-glucan, followed by lichenan and carboxymethyl cellulose. Optimum values of enzymatic activity were observed at 45°C and pH 5.3, and CelE2 exhibited considerable thermal stability at 40°C for up to 360min. Regarding the cleavage pattern on polysaccharides, the release of oligosaccharides with a wide degree of polymerization indicated a characteristic of endoglucanase activity. Furthermore, the analysis of products generated from the cleavage of cellooligosaccharides suggested that CelE2 exhibited transglycosylation activity. Interestingly, the presence of CaCl2 positively affect CelE2, including in the presence of surfactants. SAXS experiments provided key information on the effect of CaCl2 on the stability of CelE2 and dummy atom and rigid-body models were generated. To the best of our knowledge this is the first biochemical and biophysical characterization of an endoglucanase from family GH5 displaying this unconventional modular organization.

Research paper thumbnail of Bioethanol production by recycled Scheffersomyces stipitis in sequential batch fermentations with high cell density using xylose and glucose mixture

Bioresource technology, Jan 26, 2016

Here, it is shown three-step investigative procedures aiming to improve pentose-rich fermentation... more Here, it is shown three-step investigative procedures aiming to improve pentose-rich fermentations performance, involving a simple system for elevated mass production by Scheffersomyces stipitis (I), cellular recycle batch fermentations (CRBFs) at high cell density using two temperature strategies (fixed at 30°C; decreasing from 30 to 26°C) (II), and a short-term adaptation action seeking to acclimatize the microorganism in xylose rich-media (III). Cellular propagation provided 0.52gdrycellweightgRS(-1), resulting in an expressive value of 45.9gdrycellweightL(-1). The yeast robustness in CRBF was proven by effective ethanol production, reaching high xylose consumption (81%) and EtOH productivity (1.53gL(-1)h(-1)). Regarding the short-term adaptation, S. stipitis strengthened its robustness, as shown by a 6-fold increase in xylose reductase (XR) activity. The short fermentation time (20h for each batch) and the fermentation kinetics for ethanol production from xylose are quite promis...

Research paper thumbnail of trad: LIGNOCELLULOSIC ENZYMATIC COMPOSITION, ENZYMATIC CONVERSION METHOD, EXPRESSION VECTOR FROM A SOD

A presente invenção se refere a uma composição de enzimas lignocelulolíticas que compreende uma s... more A presente invenção se refere a uma composição de enzimas lignocelulolíticas que compreende uma superóxido dismutase, a um método de conversão enzimática de material lignocelulósico com dita composição e a um vetor de expressão da referida superóxido dismutase. A presente invenção tem aplicação nos processos de aproveitamento do material lignocelulósico, tais como na produção de etanol de segunda geração ou de outros subprodutos de alto valor agregado.

Research paper thumbnail of Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors

Chemical Papers, 2015

Properties of beta-glucosidase produced by Aspergillus niger URM 6642 recently isolated from the ... more Properties of beta-glucosidase produced by Aspergillus niger URM 6642 recently isolated from the Atlantic rainforest biome and its potential tolerance to saccharification of lignocellulosic biomass products and fermentation inhibitors was evaluated. The fungus was cultivated under solid state culture conditions at 37°C with different agro-industrial wastes. High levels of beta-glucosidase (3778.9 U g

Research paper thumbnail of SUPPLEMENTARY MATERIAL Designing cocktail containing redox enzymes to improve hemicellulosic hydrolysate fermentability by microorganisms

Research paper thumbnail of Designing a cocktail containing redox enzymes to improve hemicellulosic hydrolysate fermentability by microorganisms

Enzyme and Microbial Technology , 2019

Bioproducts production using monomeric sugars derived from lignocellulosic biomass presents sever... more Bioproducts production using monomeric sugars derived from lignocellulosic biomass presents several challenges , such as to require a physicochemical pretreatment to improve its conversion yields. Hydrothermal ligno-cellulose pretreatment has several advantages and results in solid and liquid streams. The former is called hemi-cellulosic hydrolysate (HH), which contains inhibitory phenolic compounds and sugar degradation products that hinder microbial fermentation products from pentose sugars. Here, we developed and applied a novel enzyme process to detoxify HH. Initially, the design of experiments with different redox activities enzymes was carried out. The enzyme mixture containing the peroxidase (from Armoracia rusticana) together with superoxide dismu-tase (from Coptotermes gestroi) are the most effective to detoxify HH derived from sugarcane bagasse. Butanol fermentation by the bacteria Clostridium saccharoperbutylacetonicum and ethanol production by the yeast Scheffer-somyces stipitis increased by 24.0× and 2.4×, respectively, relative to the untreated hemicellulosic hydrolysates. Detoxified HH was analyzed by chromatographic and spectrometric methods elucidating the mechanisms of phe-nolic compound modifications by enzymatic treatment. The enzyme mixture degraded and reduced the hydrox-yphenyl-and feruloyl-derived units and polymerized the lignin fragments. This strategy uses biocatalysts under environmentally friendly conditions and could be applied in the fuel, food, and chemical industries.

Research paper thumbnail of Exopolysaccharides from Aspergillus terreus: Production, chemical elucidation and immunoactivity

International Journal of Biological Macromolecules, 2019

Aspergillus terreus, a fungus commonly used in pharmaceutical industry to produce lovastatin and ... more Aspergillus terreus, a fungus commonly used in pharmaceutical industry to produce lovastatin and other secondary metabolites, has been reported to have beneficial biological properties. In this study the exopolysaccharides (AT-EPS) produced by A. terreus were evaluated as potential modulators of certain functions of macrophages. The production parameters for EPS obtained from the liquid culture broth of the studied fungus were optimized using response surface methodology (RSM) and indicated good correlation between the experimental and predicted values. The optimum conditions for AT-EPS extraction included fermentation at 28 °C, pH 8.79, under 98 rpm of agitation, using 2.39% glucose (carbon source) and 0.957% ammonium nitrate (nitrogen source). Under these optimized conditions, AT-EPS production was 1.34 g/L medium. The chemical analyses showed that AT-EPS was composed by mannose (Man; 40.5 mol%), galactose (Gal; 35.2 mol%), and glucose (Glc; 24.3 mol%), and the spectroscopic (FTIR; NMR) and methylation analyses indicated the presence of galactomannans, β-1,3-glucans, and glycogen-like glucans. AT-EPS was tested on murine macrophages to verify its immunoactivity and the treated cells were able to produce nitric oxide, superoxide anion, TNF-α and interleukin 6 similarly to the positive control cells. Furthermore, the macrophages treated with AT-EPS showed activated-like morphological alterations.

Research paper thumbnail of Consolidated production of coniferol and other high-value aromatic alcohols directly from lignocellulosic biomass

Green Chemistry, 2019

Sustainable production of fine chemicals and biofuels from renewable biomass offers a potential a... more Sustainable production of fine chemicals and biofuels from renewable biomass offers a potential alternative to the continued use of finite geological oil reserves. However, in order to compete with current petrochemical refinery processes, alternative biorefinery processes must overcome significant costs and productivity barriers. Herein, we demonstrate the biocatalytic production of the versatile chemical building block, coniferol, directly from lignocellulosic biomass. Following the biocatalytic treatment of lignocellulose to release and convert ferulic acid with feruloyl esterase (XynZ), carboxylic acid reductase (CAR) and aldo-keto reductase (AKR), this whole cell catalytic cascade not only achieved equivalent release of ferulic acid from lignocellulose compared to alkaline hydrolysis, but also displayed efficient conversion of ferulic acid to coniferol. This system represents a consolidated biodegradation-biotransformation strategy for the production of high value fine chemicals from waste plant biomass, offering the potential to minimize environmental waste and add value to agro-industrial residues.

Research paper thumbnail of Consolidated production of coniferol and other high-value aromatic alcohols directly from lignocellulosic biomass

GreenChemistry, 2019

Sustainable production of fine chemicals and biofuels from renewable biomass offers a potential a... more Sustainable production of fine chemicals and biofuels from renewable biomass offers a potential alternative to the continued use of finite geological oil reserves. However, in order to compete with current petrochemical refinery processes, alternative biorefinery processes must overcome significant costs and productivity barriers. Herein, we demonstrate the biocatalytic production of the versatile chemical building block, coniferol, directly from lignocellulosic biomass. Following the biocatalytic treatment of lignocellulose to release and convert ferulic acid with feruloyl esterase (XynZ), carboxylic acid reductase (CAR) and aldo-keto reductase (AKR), this whole cell catalytic cascade not only achieved equivalent release of ferulic acid from lignocellulose compared to alkaline hydrolysis, but also displayed efficient conversion of ferulic acid to coniferol. This system represents a consolidated biodegradation-biotransformation strategy for the production of high value fine chemicals from waste plant biomass, offering the potential to minimize environmental waste and add value to agro-industrial residues.

Research paper thumbnail of Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility

Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to e... more Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identified within the BAHD acyl-CoA transferase family. We used RNA interference (RNAi) silencing of orthologs in the model grasses Setaria viridis (SvBAHD01) and Brachypodium distachyon (BdBAHD01) and determined effects on AX fer-uloylation. Silencing of SvBAHD01 in Setaria resulted in a c. 60% decrease in AX feruloylation in stems consistently across four generations. Silencing of BdBAHD01 in Brachypodium stems decreased feruloylation much less, possibly due to higher expression of functionally redundant genes. Setaria SvBAHD01 RNAi plants showed: no decrease in total lignin, approximately doubled arabinose acylated by p-coumarate, changes in two-dimensional NMR spectra of unfractionated cell walls consistent with biochemical estimates, no effect on total biomass production and an increase in biomass saccharification efficiency of 40–60%. We provide the first strong evidence for a key role of the BAHD01 gene in AX feruloylation and demonstrate that it is a promising target for improvement of grass crops for biofuel, biorefining and animal nutrition applications.

Research paper thumbnail of The Coptotermes gestroi aldo-keto reductase: a multipurpose enzyme for biorefinery applications

Biotechnology for biofuels, 2017

In nature, termites can be considered as a model biological system for biofuel research based on ... more In nature, termites can be considered as a model biological system for biofuel research based on their remarkable efficiency for lignocellulosic biomass conversion. Redox enzymes are of interest in second-generation ethanol production because they promote synergic enzymatic activity with classical hydrolases for lignocellulose saccharification and inactivate fermentation inhibitory compounds produced after lignocellulose pretreatment steps. In the present study, the biochemical and structural characteristics of the Coptotermes gestroi aldo-keto reductase (CgAKR-1) were comprehensively investigated. CgAKR-1 displayed major structural differences compared with others AKRs, including the differences in the amino acid composition of the substrate-binding site, providing basis for classification as a founding member of a new AKR subfamily (family AKR1 I). Immunolocalization assays with anti-CgAKR-1 antibodies resulted in strong fluorescence in the salivary gland, proventriculus, and fore...

Research paper thumbnail of Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility

Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to e... more Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identified within the BAHD acyl-CoA transferase family. We used RNA interference (RNAi) silencing of orthologs in the model grasses Setaria viridis (SvBAHD01) and Brachypodium distachyon (BdBAHD01) and determined effects on AX fer-uloylation. Silencing of SvBAHD01 in Setaria resulted in a c. 60% decrease in AX feruloylation in stems consistently across four generations. Silencing of BdBAHD01 in Brachypodium stems decreased feruloylation much less, possibly due to higher expression of functionally redundant genes. Setaria SvBAHD01 RNAi plants showed: no decrease in total lignin, approximately doubled arabinose acylated by p-coumarate, changes in two-dimensional NMR spectra of unfractionated cell walls consistent with biochemical estimates, no effect on total biomass production and an increase in biomass saccharification efficiency of 40–60%. We provide the first strong evidence for a key role of the BAHD01 gene in AX feruloylation and demonstrate that it is a promising target for improvement of grass crops for biofuel, biorefining and animal nutrition applications.

Research paper thumbnail of Cooperation of Aspergillus nidulans enzymes increases plant polysaccharide saccharification

Biotechnology journal, Jan 5, 2016

Efficient polysaccharide degradation depends on interaction between enzymes acting on the main ch... more Efficient polysaccharide degradation depends on interaction between enzymes acting on the main chain and the side chains. Previous studies demonstrated cooperation between several enzymes, but not all enzyme combinations have been explored. A better understanding of enzyme cooperation would enable the design of better enzyme mixtures, optimally profiting from synergistic effects. In this study, we analyzed the cooperation of several enzymes involved in the degradation of xylan, glucan, xyloglucan and crude plant biomass from Aspergillus nidulans by single and combined incubations with their polymeric substrate. Positive effects were observed between most enzymes, although not always to the same extent. Moreover, the tailor made cocktails formulated in this study resulted in efficient release of glucose from plant biomass. This study also serves as an example for the complex cooperation that occurs between enzymes in plant biomass saccharification and how expression in easily-accessi...

Research paper thumbnail of Expanding the Knowledge on Lignocellulolytic and Redox Enzymes of Worker and Soldier Castes from the Lower Termite Coptotermes gestroi

Frontiers in microbiology, 2016

Termites are considered one of the most efficient decomposers of lignocelluloses on Earth due to ... more Termites are considered one of the most efficient decomposers of lignocelluloses on Earth due to their ability to produce, along with its microbial symbionts, a repertoire of carbohydrate-active enzymes (CAZymes). Recently, a set of Pro-oxidant, Antioxidant, and Detoxification enzymes (PAD) were also correlated with the metabolism of carbohydrates and lignin in termites. The lower termite Coptotermes gestroi is considered the main urban pest in Brazil, causing damage to wood constructions. Recently, analysis of the enzymatic repertoire of C. gestroi unveiled the presence of different CAZymes. Because the gene profile of CAZy/PAD enzymes endogenously synthesized by C. gestroi and also by their symbiotic protists remains unclear, the aim of this study was to explore the eukaryotic repertoire of these enzymes in worker and soldier castes of C. gestroi. Our findings showed that worker and soldier castes present similar repertoires of CAZy/PAD enzymes, and also confirmed that endo-glucan...

Research paper thumbnail of Biochemical and biophysical properties of a metagenome-derived GH5 endoglucanase displaying an unconventional domain architecture

International Journal of Biological Macromolecules

Endoglucanases are key enzymes in the degradation of cellulose, the most abundant polymer on Eart... more Endoglucanases are key enzymes in the degradation of cellulose, the most abundant polymer on Earth. The aim of this work was to perform the biochemical and biophysical characterization of CelE2, a soil metagenome derived endoglucanase. CelE2 harbors a conserved domain from glycoside hydrolase family 5 (GH5) and a C-terminal domain with identity to Calx-beta domains. The recombinant CelE2 displayed preference for hydrolysis of oat beta-glucan, followed by lichenan and carboxymethyl cellulose. Optimum values of enzymatic activity were observed at 45°C and pH 5.3, and CelE2 exhibited considerable thermal stability at 40°C for up to 360min. Regarding the cleavage pattern on polysaccharides, the release of oligosaccharides with a wide degree of polymerization indicated a characteristic of endoglucanase activity. Furthermore, the analysis of products generated from the cleavage of cellooligosaccharides suggested that CelE2 exhibited transglycosylation activity. Interestingly, the presence of CaCl2 positively affect CelE2, including in the presence of surfactants. SAXS experiments provided key information on the effect of CaCl2 on the stability of CelE2 and dummy atom and rigid-body models were generated. To the best of our knowledge this is the first biochemical and biophysical characterization of an endoglucanase from family GH5 displaying this unconventional modular organization.

Research paper thumbnail of Bioethanol production by recycled Scheffersomyces stipitis in sequential batch fermentations with high cell density using xylose and glucose mixture

Bioresource technology, Jan 26, 2016

Here, it is shown three-step investigative procedures aiming to improve pentose-rich fermentation... more Here, it is shown three-step investigative procedures aiming to improve pentose-rich fermentations performance, involving a simple system for elevated mass production by Scheffersomyces stipitis (I), cellular recycle batch fermentations (CRBFs) at high cell density using two temperature strategies (fixed at 30°C; decreasing from 30 to 26°C) (II), and a short-term adaptation action seeking to acclimatize the microorganism in xylose rich-media (III). Cellular propagation provided 0.52gdrycellweightgRS(-1), resulting in an expressive value of 45.9gdrycellweightL(-1). The yeast robustness in CRBF was proven by effective ethanol production, reaching high xylose consumption (81%) and EtOH productivity (1.53gL(-1)h(-1)). Regarding the short-term adaptation, S. stipitis strengthened its robustness, as shown by a 6-fold increase in xylose reductase (XR) activity. The short fermentation time (20h for each batch) and the fermentation kinetics for ethanol production from xylose are quite promis...

Research paper thumbnail of trad: LIGNOCELLULOSIC ENZYMATIC COMPOSITION, ENZYMATIC CONVERSION METHOD, EXPRESSION VECTOR FROM A SOD

A presente invenção se refere a uma composição de enzimas lignocelulolíticas que compreende uma s... more A presente invenção se refere a uma composição de enzimas lignocelulolíticas que compreende uma superóxido dismutase, a um método de conversão enzimática de material lignocelulósico com dita composição e a um vetor de expressão da referida superóxido dismutase. A presente invenção tem aplicação nos processos de aproveitamento do material lignocelulósico, tais como na produção de etanol de segunda geração ou de outros subprodutos de alto valor agregado.

Research paper thumbnail of Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors

Chemical Papers, 2015

Properties of beta-glucosidase produced by Aspergillus niger URM 6642 recently isolated from the ... more Properties of beta-glucosidase produced by Aspergillus niger URM 6642 recently isolated from the Atlantic rainforest biome and its potential tolerance to saccharification of lignocellulosic biomass products and fermentation inhibitors was evaluated. The fungus was cultivated under solid state culture conditions at 37°C with different agro-industrial wastes. High levels of beta-glucosidase (3778.9 U g