Paula Moscoso | University of Florence (original) (raw)
Papers by Paula Moscoso
Frontiers in Human Neuroscience, 2021
Groupitizing is a recently described phenomenon of numerosity perception where clustering items o... more Groupitizing is a recently described phenomenon of numerosity perception where clustering items of a set into smaller “subitizable” groups improves discrimination. Groupitizing is thought to be rooted on the subitizing system, with which it shares several properties: both phenomena accelerate counting and decrease estimation thresholds irrespective of stimulus format (for both simultaneous and sequential numerosity perception) and both rely on attention. As previous research on groupitizing has been almost completely limited to vision, the current study investigates whether it generalizes to other sensory modalities. Participants estimated the numerosity of a series of tones clustered either by proximity in time or by similarity in frequency. We found that compared with unstructured tone sequences, grouping lowered auditory estimation thresholds by up to 20%. The groupitizing advantage was similar across different grouping conditions, temporal proximity and tone frequency similarity...
When asked to estimate the number of items in a visual array, educated adults and children are mo... more When asked to estimate the number of items in a visual array, educated adults and children are more precise and rapid if the items are clustered into small subgroups rather than randomly distributed. This phenomenon, termed “groupitizing”, is thought to rely on the recruitment of the subitizing system (dedicated to the perception of very small numbers), with the aid of simple arithmetical calculations. The aim of current study is to verify whether the advantage for clustered stimuli does rely on subitizing, by manipulating attention, known to strongly affect attention. Participants estimated the numerosity of grouped or ungrouped arrays in condition of full attention or while attention was diverted with a dual-task. Depriving visual attention strongly decreased estimation precision of grouped but not of ungrouped arrays, as well as increasing the tendency for numerosity estimation to regress towards the mean. Additional explorative analyses suggested that calculation skills correlat...
Scientific Reports
Previous work has shown that when arrays of objects are grouped within clusters, participants can... more Previous work has shown that when arrays of objects are grouped within clusters, participants can enumerate their numerosity more rapidly than when objects are randomly scattered, a phenomenon termed “groupitizing”. Importantly, the magnitude of the grouping advantage correlates with math abilities in children. Here we show that sensory precision of numerosity estimation is also improved when grouping cues are available, by up to 20%. The grouping can be induced by color and/or spatial proximity, and occurs in temporal sequences as well as spatial arrays. The improvement is strongest for participants with the highest thresholds in the random, ungrouped conditions. Taken together with previous research, our data suggest that measurements correlations between numerosity estimation and formal math skills may be driven by grouping strategies, which require a minimal level of basic arithmetic.
Developmental Psychology, 2017
Humans and other animals are able to make rough estimations of quantities using what has been ter... more Humans and other animals are able to make rough estimations of quantities using what has been termed the approximate number system (ANS). Much evidence suggests that sensitivity to numerosity correlates with symbolic math capacity, leading to the suggestion that the ANS may serve as a start-up tool to develop symbolic math. Many experiments have demonstrated that numerosity perception transcends the sensory modality of stimuli and their presentation format (sequential or simultaneous), but it remains an open question whether the relationship between numerosity and math generalizes over stimulus format and modality. Here we measured precision for estimating the numerosity of clouds of dots and sequences of flashes or clicks, as well as for paired comparisons of the numerosity of clouds of dots. Our results show that in children, formal math abilities correlate positively with sensitivity for estimation and paired-comparisons of the numerosity of visual arrays of dots. However, precision of numerosity estimation for sequences of flashes or sounds did not correlate with math, although sensitivities in all estimations tasks (for sequential or simultaneous stimuli) were strongly correlated with each other. In adults, we found no significant correlations between math scores and sensitivity to any of the psycho-physical tasks. Taken together these results support the existence of a generalized number sense, and go on to demonstrate an intrinsic link between mathematics and perception of spatial, but not temporal numerosity.
Frontiers in Human Neuroscience, 2021
Groupitizing is a recently described phenomenon of numerosity perception where clustering items o... more Groupitizing is a recently described phenomenon of numerosity perception where clustering items of a set into smaller “subitizable” groups improves discrimination. Groupitizing is thought to be rooted on the subitizing system, with which it shares several properties: both phenomena accelerate counting and decrease estimation thresholds irrespective of stimulus format (for both simultaneous and sequential numerosity perception) and both rely on attention. As previous research on groupitizing has been almost completely limited to vision, the current study investigates whether it generalizes to other sensory modalities. Participants estimated the numerosity of a series of tones clustered either by proximity in time or by similarity in frequency. We found that compared with unstructured tone sequences, grouping lowered auditory estimation thresholds by up to 20%. The groupitizing advantage was similar across different grouping conditions, temporal proximity and tone frequency similarity...
When asked to estimate the number of items in a visual array, educated adults and children are mo... more When asked to estimate the number of items in a visual array, educated adults and children are more precise and rapid if the items are clustered into small subgroups rather than randomly distributed. This phenomenon, termed “groupitizing”, is thought to rely on the recruitment of the subitizing system (dedicated to the perception of very small numbers), with the aid of simple arithmetical calculations. The aim of current study is to verify whether the advantage for clustered stimuli does rely on subitizing, by manipulating attention, known to strongly affect attention. Participants estimated the numerosity of grouped or ungrouped arrays in condition of full attention or while attention was diverted with a dual-task. Depriving visual attention strongly decreased estimation precision of grouped but not of ungrouped arrays, as well as increasing the tendency for numerosity estimation to regress towards the mean. Additional explorative analyses suggested that calculation skills correlat...
Scientific Reports
Previous work has shown that when arrays of objects are grouped within clusters, participants can... more Previous work has shown that when arrays of objects are grouped within clusters, participants can enumerate their numerosity more rapidly than when objects are randomly scattered, a phenomenon termed “groupitizing”. Importantly, the magnitude of the grouping advantage correlates with math abilities in children. Here we show that sensory precision of numerosity estimation is also improved when grouping cues are available, by up to 20%. The grouping can be induced by color and/or spatial proximity, and occurs in temporal sequences as well as spatial arrays. The improvement is strongest for participants with the highest thresholds in the random, ungrouped conditions. Taken together with previous research, our data suggest that measurements correlations between numerosity estimation and formal math skills may be driven by grouping strategies, which require a minimal level of basic arithmetic.
Developmental Psychology, 2017
Humans and other animals are able to make rough estimations of quantities using what has been ter... more Humans and other animals are able to make rough estimations of quantities using what has been termed the approximate number system (ANS). Much evidence suggests that sensitivity to numerosity correlates with symbolic math capacity, leading to the suggestion that the ANS may serve as a start-up tool to develop symbolic math. Many experiments have demonstrated that numerosity perception transcends the sensory modality of stimuli and their presentation format (sequential or simultaneous), but it remains an open question whether the relationship between numerosity and math generalizes over stimulus format and modality. Here we measured precision for estimating the numerosity of clouds of dots and sequences of flashes or clicks, as well as for paired comparisons of the numerosity of clouds of dots. Our results show that in children, formal math abilities correlate positively with sensitivity for estimation and paired-comparisons of the numerosity of visual arrays of dots. However, precision of numerosity estimation for sequences of flashes or sounds did not correlate with math, although sensitivities in all estimations tasks (for sequential or simultaneous stimuli) were strongly correlated with each other. In adults, we found no significant correlations between math scores and sensitivity to any of the psycho-physical tasks. Taken together these results support the existence of a generalized number sense, and go on to demonstrate an intrinsic link between mathematics and perception of spatial, but not temporal numerosity.