Tomas Ros - Profile on Academia.edu (original) (raw)
Papers by Tomas Ros
Brain Communications
Collective research has identified a key electroencephalogram signature in patients with post-tra... more Collective research has identified a key electroencephalogram signature in patients with post-traumatic stress disorder, consisting of abnormally reduced alpha (8–12 Hz) rhythms. We conducted a 20-session, double-blind, randomized controlled trial of alpha desynchronizing neurofeedback in patients with post-traumatic stress disorder over 20 weeks. Our objective was to provide mechanistic evidence underlying potential clinical improvements by examining changes in aberrant post-traumatic stress disorder brain rhythms (namely, alpha oscillations) as a function of neurofeedback treatment. We randomly assigned participants with a primary diagnosis of post-traumatic stress disorder (n = 38) to either an experimental group (n = 20) or a sham-control group (n = 18). A multichannel electroencephalogram cap was used to record whole-scalp resting-state activity pre- and post-neurofeedback treatment, for both the experimental and sham-control post-traumatic stress disorder groups. We first obse...
Brain Communications, 2023
Collective research has identified a key electroencephalogram signature in patients with post-tra... more Collective research has identified a key electroencephalogram signature in patients with post-traumatic stress disorder, consisting of abnormally reduced alpha (8-12 Hz) rhythms. We conducted a 20-session, double-blind, randomized controlled trial of alpha desynchronizing neurofeedback in patients with post-traumatic stress disorder over 20 weeks. Our objective was to provide mechanistic evidence underlying potential clinical improvements by examining changes in aberrant post-traumatic stress disorder brain rhythms (namely, alpha oscillations) as a function of neurofeedback treatment. We randomly assigned participants with a primary diagnosis of post-traumatic stress disorder (n = 38) to either an experimental group (n = 20) or a sham-control group (n = 18). A multichannel electroencephalogram cap was used to record whole-scalp resting-state activity pre-and post-neurofeedback treatment, for both the experimental and sham-control post-traumatic stress disorder groups. We first observed significantly reduced relative alpha source power at baseline in patients with post-traumatic stress disorder as compared to an age/sex-matched group of neurotypical healthy controls (n = 32), primarily within regions of the anterior default mode network. Post-treatment, we found that only post-traumatic stress disorder patients in the experimental neurofeedback group demonstrated significant alpha resynchronization within areas that displayed abnormally low alpha power at baseline. In parallel, we observed significantly decreased post-traumatic stress disorder severity scores in the experimental neurofeedback group only, when comparing baseline to post-treatment (Cohen's d = 0.77) and three-month follow-up scores (Cohen's d = 0.75), with a remission rate of 60.0% at the three-month follow-up. Overall, our results indicate that neurofeedback training can rescue pathologically reduced alpha rhythmicity, a functional biomarker that has repeatedly been linked to symptoms of hyperarousal and cortical disinhibition in post-traumatic stress disorder. This randomized controlled trial provides long-term evidence suggesting that the 'alpha rebound effect' (i.e. homeostatic alpha resynchronization) occurs within key regions of the default mode network previously implicated in post-traumatic stress disorder.
Increased top-down control of emotions during symptom provocation working memory tasks following an RCT of alpha-down neurofeedback in PTSD
NeuroImage: Clinical
Spectral decomposition of EEG microstates in post-traumatic stress disorder
NeuroImage: Clinical
Originally applied to alpha oscillations in the 1970s, MS analysis has since been used to decompo... more Originally applied to alpha oscillations in the 1970s, MS analysis has since been used to decompose mainly broadband EEG signals (e.g. 1-40 Hz). We hypothesized that MS decomposition within separate, narrow frequency bands could provide more fine-grained information for capturing the spatio-temporal complexity of multichannel EEG. In this study using a large open-access dataset (n=203), we decomposed EEG recordings into 4 classical frequency bands (delta, theta, alpha, beta) in order to compare their individual MS segmentations using mutual information as well as traditional MS measures (e.g. mean duration, time coverage). Firstly, we confirmed that MS topographies were spatially equivalent across all frequencies, matching the canonical broadband maps (A, B, C, D). Interestingly however, we observed strong informational independence of MS temporal sequences between spectral bands, together with significant divergence in traditional MS measures. For example, relative to broadband, al...
Cognitive enhancement by self-regulation of endogenous oscillations with neurofeedback
In the last years, innovations in technology and methodology, as well as increased knowledge abou... more In the last years, innovations in technology and methodology, as well as increased knowledge about cortical oscillations have significantly impacted the advancement of new neurofeedback approaches. As such, sham-controlled studies, showing evidence for enhanced performance of cognition after self-regulation of brain activity, have been published. Effects have been demonstrated regarding working memory (Hsueh et al. 2016), executive functions (Enriquez-Geppert et al. 2014), binding processes (Keizer et al. 2010 a,b), and memory (Guez et al. 2014), as well as real-life performance (Ros et al. 2009). In this chapter, we first present the rationale behind neurofeedback based on electroencephalography (EEG) and then list examples of recent studies demonstrating effects on cognition and everyday life performance. Subsequentially, the conceptualization of the self-regulation of brain activity, as well as neuroplastic effects evoked by neurofeedback follow. As a next step, issues regarding ...
Current Psychiatry Reports, 2021
Purpose of Review This review provides an overview of current knowledge and understanding of EEG ... more Purpose of Review This review provides an overview of current knowledge and understanding of EEG neurofeedback for anxiety disorders and post-traumatic stress disorders. Recent Findings The manifestations of anxiety disorders and post-traumatic stress disorders (PTSD) are associated with dysfunctions of neurophysiological stress axes and brain arousal circuits, which are important dimensions of the research domain criteria (RDoC). Even if the pathophysiology of these disorders is complex, one of its defining signatures is behavioral and physiological over-arousal. Interestingly, arousal-related brain activity can be modulated by electroencephalogram-based neurofeedback (EEG NF), a non-pharmacological and non-invasive method that involves neurocognitive training through a brain-computer interface (BCI). EEG NF is characterized by a simultaneous learning process where both patient and computer are involved in modifying neuronal activity or connectivity, thereby improving associated symptoms of anxiety and/or over-arousal. Summary Positive effects of EEG NF have been described for both anxiety disorders and PTSD, yet due to a number of methodological issues, it remains unclear whether symptom improvement is the direct result of neurophysiological changes targeted by EEG NF. Thus, in this work we sought to bridge current knowledge on brain mechanisms of arousal with past and present EEG NF therapies for anxiety and PTSD. In a nutshell, we discuss the neurophysiological mechanisms underlying the effects of EEG NF in anxiety disorder and PTSD, the methodological strengths/weaknesses of existing EEG NF randomized controlled trials for these disorders, and the neuropsychological factors that may impact NF training success.
Electrophysiological correlates of improved executive function following EEG neurofeedback in adult attention deficit hyperactivity disorder
Clinical Neurophysiology, 2021
OBJECTIVE Event-related potentials (ERPs) are reported to be altered in relation to cognitive pro... more OBJECTIVE Event-related potentials (ERPs) are reported to be altered in relation to cognitive processing deficits in attention deficit hyperactivity disorder (ADHD). However, this evidence is mostly limited to cross-sectional data. The current study utilized neurofeedback (NFB) as a neuromodulatory tool to examine the ERP correlates of attentional and inhibitory processes in adult ADHD using a single-session, within-subject design. METHODS We recorded high-density EEG in 25 adult ADHD patients and 22 neurotypical controls during a Go/NoGo task, before and after a 30-minute NFB session designed to down-regulate the alpha (8-12 Hz) rhythm. RESULTS At baseline, ADHD patients demonstrated impaired Go/NoGo performance compared to controls, while Go-P3 amplitude inversely correlated with ADHD-associated symptomatology in childhood. Post NFB, task performance improved in both groups, significantly enhancing stimulus detectability (d-prime) and reducing reaction time variability, while increasing N1 and P3 ERP component amplitudes. Specifically for ADHD patients, the pre-to-post enhancement in Go-P3 amplitude correlated with measures of improved executive function, i.e., enhanced d-prime, reduced omission errors and reduced reaction time variability. CONCLUSIONS A single-session of alpha down-regulation NFB was able to reverse the abnormal neurocognitive signatures of adult ADHD during a Go/NoGo task. SIGNIFICANCE The study demonstrates for the first time the beneficial neurobehavioral effect of a single NFB session in adult ADHD, and reinforces the notion that ERPs could serve as useful diagnostic/prognostic markers of executive dysfunction.
NeuroImage: Clinical, 2020
Frontiers in Physiology, 2021
Neurofeedback (NFB) is a brain-based training method that enables users to control their own cort... more Neurofeedback (NFB) is a brain-based training method that enables users to control their own cortical oscillations using real-time feedback from the electroencephalogram (EEG). Importantly, no investigations to date have directly explored the potential impact of NFB on the brain’s key neuromodulatory systems. Our study’s objective was to assess the capacity of NFB to induce dopamine release as revealed by positron emission tomography (PET). Thirty-two healthy volunteers were randomized to either EEG-neurofeedback (NFB) or EEG-electromyography (EMG), and scanned while performing self-regulation during a single session of dynamic PET brain imaging using the high affinity D2/3 receptor radiotracer, [18F]Fallypride. NFB and EMG groups down-regulated cortical alpha power and facial muscle tone, respectively. Task-induced effects on endogenous dopamine release were estimated in the frontal cortex, anterior cingulate cortex, and thalamus, using the linearized simplified reference region mo...
Abnormal patterns of electrical oscillatory activity have been repeatedly described in adult ADHD... more Abnormal patterns of electrical oscillatory activity have been repeatedly described in adult ADHD. In particular, the alpha rhythm (8-12 Hz), known to be modulated during attention, has previously been considered as candidate biomarker for ADHD. In the present study, we asked adult ADHD patients to self-regulate their own alpha rhythm using neurofeedback (NFB), in order to examine the modulation of alpha oscillations on attentional performance and brain plasticity. Twenty-five adult ADHD patients and 22 healthy controls underwent a 64-channel EEG-recording at resting-state and during a Go/NoGo task, before and after a 30 min-NFB session designed to reduce (desynchronize) the power of the alpha rhythm. Alpha power was compared across conditions and groups, and the effects of NFB were statistically assessed by comparing behavioral and EEG measures pre-to-post NFB. Firstly, we found that relative alpha power was attenuated in our ADHD cohort compared to control subjects at baseline and...
Clinical Neurophysiology, 2019
Objective It has been suggested that there exists a subgroup of ADHD patients that have a high th... more Objective It has been suggested that there exists a subgroup of ADHD patients that have a high theta-beta ratio (TBR). The aim of this study was to analyze the distribution of TBR values in ADHD patients and validate the presence of a high-TBR cluster using objective metrics. Methods The TBR was extracted from eyes-open resting state EEG recordings of 363 ADHD patients, aged 5-21 years. The TBR distribution was estimated with three Bayesian Gaussian Mixture Models (BGMMs) with one, two, and three components, respectively. The pairwise comparison of BGMMs was carried out with deviance tests to identify the number of components that best represented the data. Results The two-component BGMM modeled the TBR values significantly better than the one-component BGMM (p-value = 0.005). No significant difference was observed between the two-component and three-component BGMM (p-value = 0.850). Conclusion These results suggest that there exist indeed two TBR clusters within the ADHD population. Significance This work offers a global framework to understanding values found in the literature and suggest guidelines on how to compute theta-beta ratio values. Moreover, using objective data-driven method we confirm the existence of a high theta-beta ratio cluster.
Stroke frequently produces attentional dysfunctions including symptoms of hemispatial neglect, wh... more Stroke frequently produces attentional dysfunctions including symptoms of hemispatial neglect, which is characterized by a breakdown of awareness for the contralesional hemispace. Recent studies with functional MRI (fMRI) suggest that hemineglect patients display abnormalintra-andinter-hemisphericfunctional connectivity. However, since stroke is a vascular disorder and fMRI signals remain sensitive to non-neuronal (i.e. vascular) coupling, more direct demonstrations of neural network dysfunction in hemispatial neglect are warranted. Here, we utilize electroencephalogram (EEG) source imaging to uncover differences in resting-state network organization between patients with right-hemispheric stroke (N = 15) and age-matched, healthy controls (N = 27), and determine the relationship between hemineglect symptoms and brain network organization. We estimatedintra-andinter-regional differences in cortical communication, by calculating the spectral power and amplitude envelope correlations (...
This checklist is intended to encourage robust experimental design and clear reporting for clinic... more This checklist is intended to encourage robust experimental design and clear reporting for clinical and cognitive-behavioural neurofeedback experiments.
Cerebral Cortex, 2016
Brain oscillations exhibit long-range temporal correlations (LRTCs), which reflect the regularity... more Brain oscillations exhibit long-range temporal correlations (LRTCs), which reflect the regularity of their fluctuations: low values representing more random (decorrelated) while high values more persistent (correlated) dynamics. LRTCs constitute supporting evidence that the brain operates near criticality, a state where neuronal activities are balanced between order and randomness. Here, healthy adults used closed-loop brain training (neurofeedback, NFB) to reduce the amplitude of alpha oscillations, producing a significant increase in spontaneous LRTCs post-training. This effect was reproduced in patients with post-traumatic stress disorder, where abnormally random dynamics were reversed by NFB, correlating with significant improvements in hyperarousal. Notably, regions manifesting abnormally low LRTCs (i.e., excessive randomness) normalized toward healthy population levels, consistent with theoretical predictions about selforganized criticality. Hence, when exposed to appropriate training, spontaneous cortical activity reveals a residual capacity for "self-tuning" its own temporal complexity, despite manifesting the abnormal dynamics seen in individuals with psychiatric disorder. Lastly, we observed an inverse-U relationship between strength of LRTC and oscillation amplitude, suggesting a breakdown of long-range dependence at high/low synchronization extremes, in line with recent computational models. Together, our findings offer a broader mechanistic framework for motivating research and clinical applications of NFB, encompassing disorders with perturbed LRTCs.
Nature Reviews Neuroscience, 2016
It provides an explicit indicator of some physiological process, such as heartbeat or brain activ... more It provides an explicit indicator of some physiological process, such as heartbeat or brain activation, so that an individual can attempt to regulate that activation or guide behaviour. Brain-machine interfaces (BMIs). Brain-machine interfaces, sometimes called direct neural or braincomputer interfaces, are direct communication pathways between the brain and external devices.
International Journal of Psychophysiology, 2017
Neurofeedback (NF) is increasingly used as a therapy for attention-deficit/hyperactivity disorder... more Neurofeedback (NF) is increasingly used as a therapy for attention-deficit/hyperactivity disorder (ADHD), however behavioral improvements require 20 plus training sessions. More economic evaluation strategies are needed to test methodological optimizations and mechanisms of action. In healthy adults, neuroplastic effects have been demonstrated directly after a single session of NF training. The aim of our study was to test the feasibility of short-term theta/beta NF in children with ADHD and to learn more about the mechanisms underlying this protocol. Children with ADHD conducted two theta/beta NF sessions. In the first half of the sessions, three NF trials (puzzles as feedback animations) were run with pre-and post-reading and picture search tasks. A significant decrease of the theta/beta ratio (TBR), driven by a decrease of theta activity, was found in the NF trials of the second session demonstrating rapid and successful neuroregulation by children with ADHD. For pre-post comparisons, children were split into good vs. poor regulator groups based on the slope of their TBR over the NF trials. For the reading task, significant EEG changes were seen for the theta band from pre-to post-NF depending on individual neuroregulation ability. This neuroplastic effect was not restricted to the feedback electrode Cz, but appeared as a generalized pattern, maximal over midline and right-hemisphere electrodes. Our findings indicate that short-term NF may be a valuable and economical tool to study the neuroplastic mechanisms of targeted NF protocols in clinical disorders, such as theta/beta training in children with ADHD.
NeuroImage: Clinical, 2016
Objective: Electroencephalogram (EEG) neurofeedback aimed at reducing the amplitude of the alpha-... more Objective: Electroencephalogram (EEG) neurofeedback aimed at reducing the amplitude of the alpha-rhythm has been shown to alter neural networks associated with posttraumatic stress disorder (PTSD), leading to symptom alleviation. Critically, the amygdala is thought to be one of the central brain regions mediating PTSD symptoms. In the current study, we compare directly patterns of amygdala complex connectivity using fMRI, before and after EEG neurofeedback, in order to observe subcortical mechanisms associated with behavioural and alpha oscillatory changes among patients. Method: We examined basolateral (BLA), centromedial (CMA), and superficial (SFA) amygdala complex restingstate functional connectivity using a seed-based approach via SPM Anatomy Toolbox. Amygdala complex connectivity was measured in twenty-one individuals with PTSD, before and after a 30-minute session of EEG neurofeedback targeting alpha desynchronization. Results: EEG neurofeedback was associated with a shift in amygdala complex connectivity from areas implicated in defensive, emotional, and fear processing/memory retrieval (left BLA and left SFA to the periaqueductal gray, and left SFA to the left hippocampus) to prefrontal areas implicated in emotion regulation/modulation (right CMA to the medial prefrontal cortex). This shift in amygdala complex connectivity was associated with reduced arousal, greater resting alpha synchronization, and was negatively correlated to PTSD symptom severity. Conclusion: These findings have significant implications for developing targeted non-invasive treatment interventions for PTSD patients that utilize alpha oscillatory neurofeedback, showing evidence of neuronal reconfiguration between areas highly implicated in the disorder, in addition to acute symptom alleviation.
Frontiers in human neuroscience, 2014
Neurofeedback (NFB) is emerging as a promising technique that enables self-regulation of ongoing ... more Neurofeedback (NFB) is emerging as a promising technique that enables self-regulation of ongoing brain oscillations. However, despite a rise in empirical evidence attesting to its clinical benefits, a solid theoretical basis is still lacking on the manner in which NFB is able to achieve these outcomes. The present work attempts to bring together various concepts from neurobiology, engineering, and dynamical systems so as to propose a contemporary theoretical framework for the mechanistic effects of NFB. The objective is to provide a firmly neurophysiological account of NFB, which goes beyond traditional behaviorist interpretations that attempt to explain psychological processes solely from a descriptive standpoint whilst treating the brain as a "black box". To this end, we interlink evidence from experimental findings that encompass a broad range of intrinsic brain phenomena: starting from "bottom-up" mechanisms of neural synchronization, followed by "top-do...
Biological Psychology, 2014
We earlier reported benefits for creativity in rehearsed music performance from alpha/theta (A/T)... more We earlier reported benefits for creativity in rehearsed music performance from alpha/theta (A/T) neurofeedback in conservatoire studies (Egner & Gruzelier, 2003) which were not found with SMR, Beta1, mental skills, aerobics or Alexander training, or in standby controls. Here the focus was the impact on novice music performance. A/T and SMR training were compared in 11-year old school children along with non-intervention controls with outcome measures not only of rehearsed music performance but also of creative improvisation, as well as sustained attention and phenomenology. Evidence of effective learning in the school setting was obtained for A/T and SMR/beta2 ratios. Preferential benefits from A/T for rehearsed music performance were replicated in children for technique and communication ratings. Benefits extended to creativity and communication ratings for creative improvisation which were shared with SMR training, disclosing an influence of SMR on unrehearsed music performance at a novice level with its greater cognitive demands. In a first application of A/T for improving sustained attention (TOVA), it was found to be more successful than SMR training, with a notable reduction in commission errors in the children, 15/33 of whom had attention indices in the ADHD range. Phenomenological reports were in favour of neurofeedback and well-being benefits. Implementing neurofeedback in the daily school setting proved feasible and holds pedagogic promise.
Brain Communications
Collective research has identified a key electroencephalogram signature in patients with post-tra... more Collective research has identified a key electroencephalogram signature in patients with post-traumatic stress disorder, consisting of abnormally reduced alpha (8–12 Hz) rhythms. We conducted a 20-session, double-blind, randomized controlled trial of alpha desynchronizing neurofeedback in patients with post-traumatic stress disorder over 20 weeks. Our objective was to provide mechanistic evidence underlying potential clinical improvements by examining changes in aberrant post-traumatic stress disorder brain rhythms (namely, alpha oscillations) as a function of neurofeedback treatment. We randomly assigned participants with a primary diagnosis of post-traumatic stress disorder (n = 38) to either an experimental group (n = 20) or a sham-control group (n = 18). A multichannel electroencephalogram cap was used to record whole-scalp resting-state activity pre- and post-neurofeedback treatment, for both the experimental and sham-control post-traumatic stress disorder groups. We first obse...
Brain Communications, 2023
Collective research has identified a key electroencephalogram signature in patients with post-tra... more Collective research has identified a key electroencephalogram signature in patients with post-traumatic stress disorder, consisting of abnormally reduced alpha (8-12 Hz) rhythms. We conducted a 20-session, double-blind, randomized controlled trial of alpha desynchronizing neurofeedback in patients with post-traumatic stress disorder over 20 weeks. Our objective was to provide mechanistic evidence underlying potential clinical improvements by examining changes in aberrant post-traumatic stress disorder brain rhythms (namely, alpha oscillations) as a function of neurofeedback treatment. We randomly assigned participants with a primary diagnosis of post-traumatic stress disorder (n = 38) to either an experimental group (n = 20) or a sham-control group (n = 18). A multichannel electroencephalogram cap was used to record whole-scalp resting-state activity pre-and post-neurofeedback treatment, for both the experimental and sham-control post-traumatic stress disorder groups. We first observed significantly reduced relative alpha source power at baseline in patients with post-traumatic stress disorder as compared to an age/sex-matched group of neurotypical healthy controls (n = 32), primarily within regions of the anterior default mode network. Post-treatment, we found that only post-traumatic stress disorder patients in the experimental neurofeedback group demonstrated significant alpha resynchronization within areas that displayed abnormally low alpha power at baseline. In parallel, we observed significantly decreased post-traumatic stress disorder severity scores in the experimental neurofeedback group only, when comparing baseline to post-treatment (Cohen's d = 0.77) and three-month follow-up scores (Cohen's d = 0.75), with a remission rate of 60.0% at the three-month follow-up. Overall, our results indicate that neurofeedback training can rescue pathologically reduced alpha rhythmicity, a functional biomarker that has repeatedly been linked to symptoms of hyperarousal and cortical disinhibition in post-traumatic stress disorder. This randomized controlled trial provides long-term evidence suggesting that the 'alpha rebound effect' (i.e. homeostatic alpha resynchronization) occurs within key regions of the default mode network previously implicated in post-traumatic stress disorder.
Increased top-down control of emotions during symptom provocation working memory tasks following an RCT of alpha-down neurofeedback in PTSD
NeuroImage: Clinical
Spectral decomposition of EEG microstates in post-traumatic stress disorder
NeuroImage: Clinical
Originally applied to alpha oscillations in the 1970s, MS analysis has since been used to decompo... more Originally applied to alpha oscillations in the 1970s, MS analysis has since been used to decompose mainly broadband EEG signals (e.g. 1-40 Hz). We hypothesized that MS decomposition within separate, narrow frequency bands could provide more fine-grained information for capturing the spatio-temporal complexity of multichannel EEG. In this study using a large open-access dataset (n=203), we decomposed EEG recordings into 4 classical frequency bands (delta, theta, alpha, beta) in order to compare their individual MS segmentations using mutual information as well as traditional MS measures (e.g. mean duration, time coverage). Firstly, we confirmed that MS topographies were spatially equivalent across all frequencies, matching the canonical broadband maps (A, B, C, D). Interestingly however, we observed strong informational independence of MS temporal sequences between spectral bands, together with significant divergence in traditional MS measures. For example, relative to broadband, al...
Cognitive enhancement by self-regulation of endogenous oscillations with neurofeedback
In the last years, innovations in technology and methodology, as well as increased knowledge abou... more In the last years, innovations in technology and methodology, as well as increased knowledge about cortical oscillations have significantly impacted the advancement of new neurofeedback approaches. As such, sham-controlled studies, showing evidence for enhanced performance of cognition after self-regulation of brain activity, have been published. Effects have been demonstrated regarding working memory (Hsueh et al. 2016), executive functions (Enriquez-Geppert et al. 2014), binding processes (Keizer et al. 2010 a,b), and memory (Guez et al. 2014), as well as real-life performance (Ros et al. 2009). In this chapter, we first present the rationale behind neurofeedback based on electroencephalography (EEG) and then list examples of recent studies demonstrating effects on cognition and everyday life performance. Subsequentially, the conceptualization of the self-regulation of brain activity, as well as neuroplastic effects evoked by neurofeedback follow. As a next step, issues regarding ...
Current Psychiatry Reports, 2021
Purpose of Review This review provides an overview of current knowledge and understanding of EEG ... more Purpose of Review This review provides an overview of current knowledge and understanding of EEG neurofeedback for anxiety disorders and post-traumatic stress disorders. Recent Findings The manifestations of anxiety disorders and post-traumatic stress disorders (PTSD) are associated with dysfunctions of neurophysiological stress axes and brain arousal circuits, which are important dimensions of the research domain criteria (RDoC). Even if the pathophysiology of these disorders is complex, one of its defining signatures is behavioral and physiological over-arousal. Interestingly, arousal-related brain activity can be modulated by electroencephalogram-based neurofeedback (EEG NF), a non-pharmacological and non-invasive method that involves neurocognitive training through a brain-computer interface (BCI). EEG NF is characterized by a simultaneous learning process where both patient and computer are involved in modifying neuronal activity or connectivity, thereby improving associated symptoms of anxiety and/or over-arousal. Summary Positive effects of EEG NF have been described for both anxiety disorders and PTSD, yet due to a number of methodological issues, it remains unclear whether symptom improvement is the direct result of neurophysiological changes targeted by EEG NF. Thus, in this work we sought to bridge current knowledge on brain mechanisms of arousal with past and present EEG NF therapies for anxiety and PTSD. In a nutshell, we discuss the neurophysiological mechanisms underlying the effects of EEG NF in anxiety disorder and PTSD, the methodological strengths/weaknesses of existing EEG NF randomized controlled trials for these disorders, and the neuropsychological factors that may impact NF training success.
Electrophysiological correlates of improved executive function following EEG neurofeedback in adult attention deficit hyperactivity disorder
Clinical Neurophysiology, 2021
OBJECTIVE Event-related potentials (ERPs) are reported to be altered in relation to cognitive pro... more OBJECTIVE Event-related potentials (ERPs) are reported to be altered in relation to cognitive processing deficits in attention deficit hyperactivity disorder (ADHD). However, this evidence is mostly limited to cross-sectional data. The current study utilized neurofeedback (NFB) as a neuromodulatory tool to examine the ERP correlates of attentional and inhibitory processes in adult ADHD using a single-session, within-subject design. METHODS We recorded high-density EEG in 25 adult ADHD patients and 22 neurotypical controls during a Go/NoGo task, before and after a 30-minute NFB session designed to down-regulate the alpha (8-12 Hz) rhythm. RESULTS At baseline, ADHD patients demonstrated impaired Go/NoGo performance compared to controls, while Go-P3 amplitude inversely correlated with ADHD-associated symptomatology in childhood. Post NFB, task performance improved in both groups, significantly enhancing stimulus detectability (d-prime) and reducing reaction time variability, while increasing N1 and P3 ERP component amplitudes. Specifically for ADHD patients, the pre-to-post enhancement in Go-P3 amplitude correlated with measures of improved executive function, i.e., enhanced d-prime, reduced omission errors and reduced reaction time variability. CONCLUSIONS A single-session of alpha down-regulation NFB was able to reverse the abnormal neurocognitive signatures of adult ADHD during a Go/NoGo task. SIGNIFICANCE The study demonstrates for the first time the beneficial neurobehavioral effect of a single NFB session in adult ADHD, and reinforces the notion that ERPs could serve as useful diagnostic/prognostic markers of executive dysfunction.
NeuroImage: Clinical, 2020
Frontiers in Physiology, 2021
Neurofeedback (NFB) is a brain-based training method that enables users to control their own cort... more Neurofeedback (NFB) is a brain-based training method that enables users to control their own cortical oscillations using real-time feedback from the electroencephalogram (EEG). Importantly, no investigations to date have directly explored the potential impact of NFB on the brain’s key neuromodulatory systems. Our study’s objective was to assess the capacity of NFB to induce dopamine release as revealed by positron emission tomography (PET). Thirty-two healthy volunteers were randomized to either EEG-neurofeedback (NFB) or EEG-electromyography (EMG), and scanned while performing self-regulation during a single session of dynamic PET brain imaging using the high affinity D2/3 receptor radiotracer, [18F]Fallypride. NFB and EMG groups down-regulated cortical alpha power and facial muscle tone, respectively. Task-induced effects on endogenous dopamine release were estimated in the frontal cortex, anterior cingulate cortex, and thalamus, using the linearized simplified reference region mo...
Abnormal patterns of electrical oscillatory activity have been repeatedly described in adult ADHD... more Abnormal patterns of electrical oscillatory activity have been repeatedly described in adult ADHD. In particular, the alpha rhythm (8-12 Hz), known to be modulated during attention, has previously been considered as candidate biomarker for ADHD. In the present study, we asked adult ADHD patients to self-regulate their own alpha rhythm using neurofeedback (NFB), in order to examine the modulation of alpha oscillations on attentional performance and brain plasticity. Twenty-five adult ADHD patients and 22 healthy controls underwent a 64-channel EEG-recording at resting-state and during a Go/NoGo task, before and after a 30 min-NFB session designed to reduce (desynchronize) the power of the alpha rhythm. Alpha power was compared across conditions and groups, and the effects of NFB were statistically assessed by comparing behavioral and EEG measures pre-to-post NFB. Firstly, we found that relative alpha power was attenuated in our ADHD cohort compared to control subjects at baseline and...
Clinical Neurophysiology, 2019
Objective It has been suggested that there exists a subgroup of ADHD patients that have a high th... more Objective It has been suggested that there exists a subgroup of ADHD patients that have a high theta-beta ratio (TBR). The aim of this study was to analyze the distribution of TBR values in ADHD patients and validate the presence of a high-TBR cluster using objective metrics. Methods The TBR was extracted from eyes-open resting state EEG recordings of 363 ADHD patients, aged 5-21 years. The TBR distribution was estimated with three Bayesian Gaussian Mixture Models (BGMMs) with one, two, and three components, respectively. The pairwise comparison of BGMMs was carried out with deviance tests to identify the number of components that best represented the data. Results The two-component BGMM modeled the TBR values significantly better than the one-component BGMM (p-value = 0.005). No significant difference was observed between the two-component and three-component BGMM (p-value = 0.850). Conclusion These results suggest that there exist indeed two TBR clusters within the ADHD population. Significance This work offers a global framework to understanding values found in the literature and suggest guidelines on how to compute theta-beta ratio values. Moreover, using objective data-driven method we confirm the existence of a high theta-beta ratio cluster.
Stroke frequently produces attentional dysfunctions including symptoms of hemispatial neglect, wh... more Stroke frequently produces attentional dysfunctions including symptoms of hemispatial neglect, which is characterized by a breakdown of awareness for the contralesional hemispace. Recent studies with functional MRI (fMRI) suggest that hemineglect patients display abnormalintra-andinter-hemisphericfunctional connectivity. However, since stroke is a vascular disorder and fMRI signals remain sensitive to non-neuronal (i.e. vascular) coupling, more direct demonstrations of neural network dysfunction in hemispatial neglect are warranted. Here, we utilize electroencephalogram (EEG) source imaging to uncover differences in resting-state network organization between patients with right-hemispheric stroke (N = 15) and age-matched, healthy controls (N = 27), and determine the relationship between hemineglect symptoms and brain network organization. We estimatedintra-andinter-regional differences in cortical communication, by calculating the spectral power and amplitude envelope correlations (...
This checklist is intended to encourage robust experimental design and clear reporting for clinic... more This checklist is intended to encourage robust experimental design and clear reporting for clinical and cognitive-behavioural neurofeedback experiments.
Cerebral Cortex, 2016
Brain oscillations exhibit long-range temporal correlations (LRTCs), which reflect the regularity... more Brain oscillations exhibit long-range temporal correlations (LRTCs), which reflect the regularity of their fluctuations: low values representing more random (decorrelated) while high values more persistent (correlated) dynamics. LRTCs constitute supporting evidence that the brain operates near criticality, a state where neuronal activities are balanced between order and randomness. Here, healthy adults used closed-loop brain training (neurofeedback, NFB) to reduce the amplitude of alpha oscillations, producing a significant increase in spontaneous LRTCs post-training. This effect was reproduced in patients with post-traumatic stress disorder, where abnormally random dynamics were reversed by NFB, correlating with significant improvements in hyperarousal. Notably, regions manifesting abnormally low LRTCs (i.e., excessive randomness) normalized toward healthy population levels, consistent with theoretical predictions about selforganized criticality. Hence, when exposed to appropriate training, spontaneous cortical activity reveals a residual capacity for "self-tuning" its own temporal complexity, despite manifesting the abnormal dynamics seen in individuals with psychiatric disorder. Lastly, we observed an inverse-U relationship between strength of LRTC and oscillation amplitude, suggesting a breakdown of long-range dependence at high/low synchronization extremes, in line with recent computational models. Together, our findings offer a broader mechanistic framework for motivating research and clinical applications of NFB, encompassing disorders with perturbed LRTCs.
Nature Reviews Neuroscience, 2016
It provides an explicit indicator of some physiological process, such as heartbeat or brain activ... more It provides an explicit indicator of some physiological process, such as heartbeat or brain activation, so that an individual can attempt to regulate that activation or guide behaviour. Brain-machine interfaces (BMIs). Brain-machine interfaces, sometimes called direct neural or braincomputer interfaces, are direct communication pathways between the brain and external devices.
International Journal of Psychophysiology, 2017
Neurofeedback (NF) is increasingly used as a therapy for attention-deficit/hyperactivity disorder... more Neurofeedback (NF) is increasingly used as a therapy for attention-deficit/hyperactivity disorder (ADHD), however behavioral improvements require 20 plus training sessions. More economic evaluation strategies are needed to test methodological optimizations and mechanisms of action. In healthy adults, neuroplastic effects have been demonstrated directly after a single session of NF training. The aim of our study was to test the feasibility of short-term theta/beta NF in children with ADHD and to learn more about the mechanisms underlying this protocol. Children with ADHD conducted two theta/beta NF sessions. In the first half of the sessions, three NF trials (puzzles as feedback animations) were run with pre-and post-reading and picture search tasks. A significant decrease of the theta/beta ratio (TBR), driven by a decrease of theta activity, was found in the NF trials of the second session demonstrating rapid and successful neuroregulation by children with ADHD. For pre-post comparisons, children were split into good vs. poor regulator groups based on the slope of their TBR over the NF trials. For the reading task, significant EEG changes were seen for the theta band from pre-to post-NF depending on individual neuroregulation ability. This neuroplastic effect was not restricted to the feedback electrode Cz, but appeared as a generalized pattern, maximal over midline and right-hemisphere electrodes. Our findings indicate that short-term NF may be a valuable and economical tool to study the neuroplastic mechanisms of targeted NF protocols in clinical disorders, such as theta/beta training in children with ADHD.
NeuroImage: Clinical, 2016
Objective: Electroencephalogram (EEG) neurofeedback aimed at reducing the amplitude of the alpha-... more Objective: Electroencephalogram (EEG) neurofeedback aimed at reducing the amplitude of the alpha-rhythm has been shown to alter neural networks associated with posttraumatic stress disorder (PTSD), leading to symptom alleviation. Critically, the amygdala is thought to be one of the central brain regions mediating PTSD symptoms. In the current study, we compare directly patterns of amygdala complex connectivity using fMRI, before and after EEG neurofeedback, in order to observe subcortical mechanisms associated with behavioural and alpha oscillatory changes among patients. Method: We examined basolateral (BLA), centromedial (CMA), and superficial (SFA) amygdala complex restingstate functional connectivity using a seed-based approach via SPM Anatomy Toolbox. Amygdala complex connectivity was measured in twenty-one individuals with PTSD, before and after a 30-minute session of EEG neurofeedback targeting alpha desynchronization. Results: EEG neurofeedback was associated with a shift in amygdala complex connectivity from areas implicated in defensive, emotional, and fear processing/memory retrieval (left BLA and left SFA to the periaqueductal gray, and left SFA to the left hippocampus) to prefrontal areas implicated in emotion regulation/modulation (right CMA to the medial prefrontal cortex). This shift in amygdala complex connectivity was associated with reduced arousal, greater resting alpha synchronization, and was negatively correlated to PTSD symptom severity. Conclusion: These findings have significant implications for developing targeted non-invasive treatment interventions for PTSD patients that utilize alpha oscillatory neurofeedback, showing evidence of neuronal reconfiguration between areas highly implicated in the disorder, in addition to acute symptom alleviation.
Frontiers in human neuroscience, 2014
Neurofeedback (NFB) is emerging as a promising technique that enables self-regulation of ongoing ... more Neurofeedback (NFB) is emerging as a promising technique that enables self-regulation of ongoing brain oscillations. However, despite a rise in empirical evidence attesting to its clinical benefits, a solid theoretical basis is still lacking on the manner in which NFB is able to achieve these outcomes. The present work attempts to bring together various concepts from neurobiology, engineering, and dynamical systems so as to propose a contemporary theoretical framework for the mechanistic effects of NFB. The objective is to provide a firmly neurophysiological account of NFB, which goes beyond traditional behaviorist interpretations that attempt to explain psychological processes solely from a descriptive standpoint whilst treating the brain as a "black box". To this end, we interlink evidence from experimental findings that encompass a broad range of intrinsic brain phenomena: starting from "bottom-up" mechanisms of neural synchronization, followed by "top-do...
Biological Psychology, 2014
We earlier reported benefits for creativity in rehearsed music performance from alpha/theta (A/T)... more We earlier reported benefits for creativity in rehearsed music performance from alpha/theta (A/T) neurofeedback in conservatoire studies (Egner & Gruzelier, 2003) which were not found with SMR, Beta1, mental skills, aerobics or Alexander training, or in standby controls. Here the focus was the impact on novice music performance. A/T and SMR training were compared in 11-year old school children along with non-intervention controls with outcome measures not only of rehearsed music performance but also of creative improvisation, as well as sustained attention and phenomenology. Evidence of effective learning in the school setting was obtained for A/T and SMR/beta2 ratios. Preferential benefits from A/T for rehearsed music performance were replicated in children for technique and communication ratings. Benefits extended to creativity and communication ratings for creative improvisation which were shared with SMR training, disclosing an influence of SMR on unrehearsed music performance at a novice level with its greater cognitive demands. In a first application of A/T for improving sustained attention (TOVA), it was found to be more successful than SMR training, with a notable reduction in commission errors in the children, 15/33 of whom had attention indices in the ADHD range. Phenomenological reports were in favour of neurofeedback and well-being benefits. Implementing neurofeedback in the daily school setting proved feasible and holds pedagogic promise.
The neurobiological functions of an organism serve to assist its adaptation to behaviourally chal... more The neurobiological functions of an organism serve to assist its adaptation to behaviourally challenging environments, which commonly involves the learning and refinement of perceptuo-motor skills. The intensity and time scale at which this occurs is critical towards survival. Previous work has observed that the neurochemical and neuroelectric (EEG) operation of specific functional systems is upregulated during so-called ‘activated’ states of behaviour. Thus it has recently been shown that artificial (i.e. exogenous) stimulation of such systems via pharmacological or electrical means can successfully modulate as well as enhance learning and associated behavioural performance. We hypothesized that neurofeedback, which is implemented through non-invasive volitional control of electrocortical rhythms (EEG), offers an alternate and natural (i.e. endogenous) way to modulate and thereby stimulate analogous systems. Study 1 shows that neurofeedback is a viable and beneficial method for improving the acquisition and performance of perceptuo-motor skills in trainee microsurgeons, when compared to a wait-list control group. With the aid of transcranial magnetic stimulation (TMS), Study 2 demonstrates for the first time that 30 minutes of a single neurofeedback session directly leads to a robust and correlated change in corticomotor plasticity which is usually associated with learning or observed after exogenous stimulation. Lastly, Study 3 investigates the short-term modulation of one session of ‘excitatory’ neurofeedback on the subsequent performance of a serial reaction-time task (SRTT), an experimental paradigm widely used as a model for procedural perceptuo-motor learning. In conclusion, this thesis contributes original evidence of direct as well as long-term functional enhancements following EEG neurofeedback, and supports its use as a safe, non-invasive and natural method for improving human perceptuo-motor performance and learning.
We present EEG and fMRI neuroimaging evidence that self-regulation of human cortical activity, by... more We present EEG and fMRI neuroimaging evidence that self-regulation of human cortical activity, by means of one sitting of neurofeedback, can induce neurobehavioural effects that outlast the training session, predicting changes in mind‐wandering during a subsequent sensory attention task. These relationships significantly differed from a sham‐feedback group, who received identical feedback stimuli and levels of reward. Specifically, volitional reduction of the human alpha rhythm altered coupling within the salience and default-mode networks, previously implicated in states of attention and mind-wandering. Hence, our findings demonstrate that self-induced shifts in brain state are capable of influencing the future incidence of task-unrelated thoughts; thereby causally impacting the contents of consciousness. To our knowledge, the results provide one of the clearest demonstrations that waking experience may be trained endogenously in a direction that is more attentive and internally “quiet”, as is traditionally reported by meditative disciplines. It lends further credence to a causal, bi-directional relationship between the mind and brain, insofar targeting the former may lead to changes in the plasticity of the latter, and vice versa. This also opens the possibility of utilising brain-based feedback to inform on the real-time neural signatures of particular contemplative/meditative practices, facilitating their acquisition.
Tuning Pathological Oscillations with EEG Neurofeedback and Self-Organized Criticality
Theoretical framework for neurofeedback brain training, and its potential mechanism as a therapy ... more Theoretical framework for neurofeedback brain training, and its potential mechanism as a therapy for ADHD, PTSD, depression, and other brain disorders.
Presentation given by neuroscientist Tomas Ros from University of Geneva. @ TALK 2 UR BRAIN Conference, Tel-Aviv University, November 2015