Barbe Rentsch | University Hospital Carl Gustav Carus Dresden (original) (raw)
Papers by Barbe Rentsch
Annals of Biomedical Engineering, 2009
The aim of this study was to evaluate an embroidered polycaprolactone-co-lactide (trade name PCL)... more The aim of this study was to evaluate an embroidered polycaprolactone-co-lactide (trade name PCL) scaffold for the application in bone tissue engineering. The surface of the PCL scaffolds was hydrolyzed with NaOH and coated with collagen I (coll I) and chondroitin sulfate (CS). It was investigated if a change of the surface properties and the application of coll I and CS could promote cell adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSC). The porosity (80%) and pore size (0.2–1 mm) of the scaffold could be controlled by embroidery technique and should be suitable for bone ingrowth. The treatment with NaOH made the polymer surface more hydrophilic (water contact angle dropped to 25%), enhanced the coll I adsorption (up to 15%) and the cell attachment (two times). The coll I coated scaffold improved cell attachment and proliferation (three times). CS, as part of the artificial matrix, could induce the osteogenic differentiation of hMSC without other differentiation additives. The investigated scaffolds could act not just as temporary matrix for cell migration, proliferation, and differentiation in bone tissue engineering but also have a great potential as bioartificial bone substitute.
Journal of Biomechanical Engineering-transactions of The Asme, 2010
Human mesenchymal stem cells (hMSCs) from bone marrow are considered a promising cell source for ... more Human mesenchymal stem cells (hMSCs) from bone marrow are considered a promising cell source for bone tissue engineering applications because of their ability to differentiate into cells of the osteoblastic lineage. Mechanical stimulation is able to promote osteogenic differentiation of hMSC; however, the use of hydrostatic pressure (HP) has not been well studied. Artificial extracellular matrices containing collagen and chondroitin sulfate (CS) have promoted the expression of an osteoblastic phenotype by hMSCs. However, there has been little research into the combined effects of biochemical stimulation by matrices and simultaneous mechanical stimulation. In this study, artificial extracellular matrices generated from collagen and/or CS were coated onto polycaprolactone-co-lactide substrates, seeded with hMSCs and subjected to cyclic HP at various time points during 21 days after cell seeding to investigate the effects of biochemical, mechanical, and combined biochemical and mechanical stimulations. Cell differentiation was assessed by analyzing the expression of alkaline phosphatase (ALP) at the protein-and mRNA levels, as well as for calcium accumulation. The timing of HP stimulation affected hMSC proliferation and expression of ALP activity. HP stimulation after 6 days was most effective at promoting ALP activity. CS-containing matrices promoted the osteogenic differentiation of hMSCs. A combination of both CS-containing matrices and cyclic HP yields optimal effects on osteogenic differentiation of hMSCs on scaffolds compared with individual responses.
Journal of Biomedical Materials Research Part A, 2010
The aim of this study was to evaluate the osteogenic potential and the vascularization of embroid... more The aim of this study was to evaluate the osteogenic potential and the vascularization of embroidered, tissue engineered, and cell-seeded 3D poly(3)hydroxybutyrate (PHB) scaffolds in nude rats. Collagen I (coll I)- and collagen I/chondroitin sulfate (coll I/CS)-coated PHB scaffolds were seeded with human mesenchymal stem cells (hMSCs). Proliferation and differentiation were characterized by different biochemical assays in vitro. For animal experiments, the cells were cultivated on coll I- or coll I/CS-coated scaffolds and either expanded or osteogenically differentiated. Scaffolds were piled up to create a 3D scaffold pad and implanted subcutaneously into nude rats. In vitro hMSC showed proliferation and differentiation on PHB scaffolds. Alkaline phosphatase (ALP) and calcium increased in the differentiation medium and in the presence of coll I/CS. In vivo blood vessels were found in the scaffold-stack. Histological/immunohistological analyses of explanted scaffolds showed osteogenic markers such as osteopontin, osteonectin, and coll I around the PHB fibers. Coll I/CS-coated scaffolds with expanded hMSC showed higher values of ALP and calcium than the other combinations. Embroidered PHB scaffolds, coated with extracellular matrix components, provided an adequate environment and, therefore, a template for hMSC which could be differentiated in osteogenic direction. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010
in Vitro Cellular & Developmental Biology-animal, 2010
The current study was undertaken with the goal being isolation, cultivation, and characterization... more The current study was undertaken with the goal being isolation, cultivation, and characterization of ovine mesenchymal stem cells (oMSC). Furthermore, the objective was to determine whether biological active polycaprolactone-co-lactide (trade name PCL) scaffolds support the growth and differentiation of oMSC in vitro. The oMSC were isolated from the iliac crest of six merino sheep. Three factors were used to demonstrate the MSC properties of the isolated cells in detail. (1) Their ability to proliferate in culture with a spindle-shaped morphology, (2) presence of specific surface marker proteins, and (3) their capacity to differentiate into the three classical mesenchymal pathways, osteoblastic, adipogenic, and chondrogenic lineages. Furthermore, embroidered PCL scaffolds were coated with collagen I (coll I) and chondroitin sulfate (CS). The porous structure of the scaffolds and the coating with coll I/CS allowed the oMSC to adhere, proliferate, and to migrate into the scaffolds. The coll I/CS coating on the PCL scaffolds induced osteogenic differentiation of hMSC, without differentiation supplements, indicating that the scaffold also has an osteoinductive character. In conclusion, the isolated cells from the ovine bone marrow have similar morphologic, immunophenotypic, and functional characteristics as their human counterparts. These cells were also found to differentiate into multiple mesenchymal cell types. This study demonstrates that embroidered PCL scaffolds can act as a temporary matrix for cell migration, proliferation, and differentiation of oMSC. The data presented will provide a reliable model system to assess the translation of MSC-based therapy into a variety of valuable ovine experimental models under autologous settings.
Tissue engineering and regenerative techniques targeting bone include a broad range of strategies... more Tissue engineering and regenerative techniques targeting bone include a broad range of strategies and approaches to repair, augment, replace or regenerate bone tissue. Investigations that are aimed at optimization of these strategies until clinical translation require control of systemic factors as well as modification of a broad range of key parameters.
Annals of Biomedical Engineering, 2009
The aim of this study was to evaluate an embroidered polycaprolactone-co-lactide (trade name PCL)... more The aim of this study was to evaluate an embroidered polycaprolactone-co-lactide (trade name PCL) scaffold for the application in bone tissue engineering. The surface of the PCL scaffolds was hydrolyzed with NaOH and coated with collagen I (coll I) and chondroitin sulfate (CS). It was investigated if a change of the surface properties and the application of coll I and CS could promote cell adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSC). The porosity (80%) and pore size (0.2–1 mm) of the scaffold could be controlled by embroidery technique and should be suitable for bone ingrowth. The treatment with NaOH made the polymer surface more hydrophilic (water contact angle dropped to 25%), enhanced the coll I adsorption (up to 15%) and the cell attachment (two times). The coll I coated scaffold improved cell attachment and proliferation (three times). CS, as part of the artificial matrix, could induce the osteogenic differentiation of hMSC without other differentiation additives. The investigated scaffolds could act not just as temporary matrix for cell migration, proliferation, and differentiation in bone tissue engineering but also have a great potential as bioartificial bone substitute.
Journal of Biomechanical Engineering-transactions of The Asme, 2010
Human mesenchymal stem cells (hMSCs) from bone marrow are considered a promising cell source for ... more Human mesenchymal stem cells (hMSCs) from bone marrow are considered a promising cell source for bone tissue engineering applications because of their ability to differentiate into cells of the osteoblastic lineage. Mechanical stimulation is able to promote osteogenic differentiation of hMSC; however, the use of hydrostatic pressure (HP) has not been well studied. Artificial extracellular matrices containing collagen and chondroitin sulfate (CS) have promoted the expression of an osteoblastic phenotype by hMSCs. However, there has been little research into the combined effects of biochemical stimulation by matrices and simultaneous mechanical stimulation. In this study, artificial extracellular matrices generated from collagen and/or CS were coated onto polycaprolactone-co-lactide substrates, seeded with hMSCs and subjected to cyclic HP at various time points during 21 days after cell seeding to investigate the effects of biochemical, mechanical, and combined biochemical and mechanical stimulations. Cell differentiation was assessed by analyzing the expression of alkaline phosphatase (ALP) at the protein-and mRNA levels, as well as for calcium accumulation. The timing of HP stimulation affected hMSC proliferation and expression of ALP activity. HP stimulation after 6 days was most effective at promoting ALP activity. CS-containing matrices promoted the osteogenic differentiation of hMSCs. A combination of both CS-containing matrices and cyclic HP yields optimal effects on osteogenic differentiation of hMSCs on scaffolds compared with individual responses.
Journal of Biomedical Materials Research Part A, 2010
The aim of this study was to evaluate the osteogenic potential and the vascularization of embroid... more The aim of this study was to evaluate the osteogenic potential and the vascularization of embroidered, tissue engineered, and cell-seeded 3D poly(3)hydroxybutyrate (PHB) scaffolds in nude rats. Collagen I (coll I)- and collagen I/chondroitin sulfate (coll I/CS)-coated PHB scaffolds were seeded with human mesenchymal stem cells (hMSCs). Proliferation and differentiation were characterized by different biochemical assays in vitro. For animal experiments, the cells were cultivated on coll I- or coll I/CS-coated scaffolds and either expanded or osteogenically differentiated. Scaffolds were piled up to create a 3D scaffold pad and implanted subcutaneously into nude rats. In vitro hMSC showed proliferation and differentiation on PHB scaffolds. Alkaline phosphatase (ALP) and calcium increased in the differentiation medium and in the presence of coll I/CS. In vivo blood vessels were found in the scaffold-stack. Histological/immunohistological analyses of explanted scaffolds showed osteogenic markers such as osteopontin, osteonectin, and coll I around the PHB fibers. Coll I/CS-coated scaffolds with expanded hMSC showed higher values of ALP and calcium than the other combinations. Embroidered PHB scaffolds, coated with extracellular matrix components, provided an adequate environment and, therefore, a template for hMSC which could be differentiated in osteogenic direction. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010
in Vitro Cellular & Developmental Biology-animal, 2010
The current study was undertaken with the goal being isolation, cultivation, and characterization... more The current study was undertaken with the goal being isolation, cultivation, and characterization of ovine mesenchymal stem cells (oMSC). Furthermore, the objective was to determine whether biological active polycaprolactone-co-lactide (trade name PCL) scaffolds support the growth and differentiation of oMSC in vitro. The oMSC were isolated from the iliac crest of six merino sheep. Three factors were used to demonstrate the MSC properties of the isolated cells in detail. (1) Their ability to proliferate in culture with a spindle-shaped morphology, (2) presence of specific surface marker proteins, and (3) their capacity to differentiate into the three classical mesenchymal pathways, osteoblastic, adipogenic, and chondrogenic lineages. Furthermore, embroidered PCL scaffolds were coated with collagen I (coll I) and chondroitin sulfate (CS). The porous structure of the scaffolds and the coating with coll I/CS allowed the oMSC to adhere, proliferate, and to migrate into the scaffolds. The coll I/CS coating on the PCL scaffolds induced osteogenic differentiation of hMSC, without differentiation supplements, indicating that the scaffold also has an osteoinductive character. In conclusion, the isolated cells from the ovine bone marrow have similar morphologic, immunophenotypic, and functional characteristics as their human counterparts. These cells were also found to differentiate into multiple mesenchymal cell types. This study demonstrates that embroidered PCL scaffolds can act as a temporary matrix for cell migration, proliferation, and differentiation of oMSC. The data presented will provide a reliable model system to assess the translation of MSC-based therapy into a variety of valuable ovine experimental models under autologous settings.
Tissue engineering and regenerative techniques targeting bone include a broad range of strategies... more Tissue engineering and regenerative techniques targeting bone include a broad range of strategies and approaches to repair, augment, replace or regenerate bone tissue. Investigations that are aimed at optimization of these strategies until clinical translation require control of systemic factors as well as modification of a broad range of key parameters.