Simon Matabva | University of South Africa (original) (raw)
Papers by Simon Matabva
Wireless Communications and Mobile Computing, Jan 1, 2003
Ultra-wideband (UWB) communication techniques have attracted a great interest in both academia an... more Ultra-wideband (UWB) communication techniques have attracted a great interest in both academia and industry in the past few years for applications in short-range wireless mobile systems. This is due to the potential advantages of UWB transmissions such as low power, high rate, immunity to multipath propagation, less complex transceiver hardware, and low interference. However, tremendous R&D efforts are required to face various technical challenges in developing UWB wireless systems, including UWB channel characterization, transceiver design, coexistence and interworking with other narrowband wireless systems, design of the link and network layers to benefit from UWB transmission characteristics. This paper is to provide an overview of UWB communications, summarize the previous research results, and identify further research issues that need to be tackled. The emphasis is placed on the commercial wireless communications. Copyright © 2003 John Wiley & Sons, Ltd.
IEEE Communications Surveys & Tutorials, Jan 1, 2005
Understanding usage patterns in wireless local-area networks (WLANs) is critical for those who de... more Understanding usage patterns in wireless local-area networks (WLANs) is critical for those who develop, deploy, and manage WLAN technology, as well as those who develop systems and application software for wireless networks. This paper presents results from the largest and most comprehensive trace of network activity in a large, production wireless LAN. For eleven weeks we traced the activity of nearly two thousand users drawn from a general campus population, using a campus-wide network of 476 access points spread over 161 buildings at Dartmouth College. Our study expands on those done by Tang and Baker, with a significantly larger and broader population. We found that residential traffic dominated all other traffic, particularly in residences populated by newer students; students are increasingly choosing a wireless laptop as their primary computer. Although web protocols were the single largest component of traffic volume, network backup and file sharing contributed an unexpectedly large amount to the traffic. Although there was some roaming within a network session, we were surprised by the number of situations in which cards roamed excessively, unable to settle on one access point. Cross-subnet roams were an especial problem, because they broke IP connections, indicating the need for solutions that avoid or accommodate such roams.
Computer Networks, Jan 1, 2006
Today’s wireless networks are characterized by a fixed spectrum assignment policy. However, a lar... more Today’s wireless networks are characterized by a fixed spectrum assignment policy. However, a large portion of the assigned spectrum is used sporadically and geographical variations in the utilization of assigned spectrum ranges from 15% to 85% with a high variance in time. The limited available spectrum and the inefficiency in the spectrum usage necessitate a new communication paradigm to exploit the existing wireless spectrum opportunistically. This new networking paradigm is referred to as NeXt Generation (xG) Networks as well as Dynamic Spectrum Access (DSA) and cognitive radio networks. The term xG networks is used throughout the paper. The novel functionalities and current research challenges of the xG networks are explained in detail. More specifically, a brief overview of the cognitive radio technology is provided and the xG network architecture is introduced. Moreover, the xG network functions such as spectrum management, spectrum mobility and spectrum sharing are explained in detail. The influence of these functions on the performance of the upper layer protocols such as routing and transport are investigated and open research issues in these areas are also outlined. Finally, the cross-layer design challenges in xG networks are discussed.
Computer Networks, Jan 1, 2005
Wireless mesh networks (WMNs) consist of mesh routers and mesh clients, where mesh routers have m... more Wireless mesh networks (WMNs) consist of mesh routers and mesh clients, where mesh routers have minimal mobility and form the backbone of WMNs. They provide network access for both mesh and conventional clients. The integration of WMNs with other networks such as the Internet, cellular, IEEE 802.11, IEEE 802.15, IEEE 802.16, sensor networks, etc., can be accomplished through the gateway and bridging functions in the mesh routers. Mesh clients can be either stationary or mobile, and can form a client mesh network among themselves and with mesh routers. WMNs are anticipated to resolve the limitations and to significantly improve the performance of ad hoc networks, wireless local area networks (WLANs), wireless personal area networks (WPANs), and wireless metropolitan area networks (WMANs). They are undergoing rapid progress and inspiring numerous deployments. WMNs will deliver wireless services for a large variety of applications in personal, local, campus, and metropolitan areas. Despite recent advances in wireless mesh networking, many research challenges remain in all protocol layers. This paper presents a detailed study on recent advances and open research issues in WMNs. System architectures and applications of WMNs are described, followed by discussing the critical factors influencing protocol design. Theoretical network capacity and the state-of-the-art protocols for WMNs are explored with an objective to point out a number of open research issues. Finally, testbeds, industrial practice, and current standard activities related to WMNs are highlighted.
Sensor devices integrating embedded processors, low-power, lowbandwidth radios, and a modest amou... more Sensor devices integrating embedded processors, low-power, lowbandwidth radios, and a modest amount of storage have the potential to enhance emergency medical care. Wearable vital sign sensors can track patient status and location, while simultaneously operating as active tags. We introduce CodeBlue, a wireless infrastructure intended for deployment in emergency medical care, integrating low-power, wireless vital sign sensors, PDAs, and PC-class systems. CodeBlue will enhance first responders' ability to assess patients on scene, ensure seamless transfer of data among caregivers, and facilitate efficient allocation of hospital resources. Intended to scale to very dense networks with thousands of devices and extremely volatile network conditions, this infrastructure will support reliable, ad hoc data delivery, a flexible naming and discovery scheme, and a decentralized security model. This paper introduces our architecture and highlights research challenges being addressed by the CodeBlue development effort.
Computer Communication Review, Jan 1, 2004
The vision is tantalizing: a high-performance, scalable, and widely deployed wireless Internet th... more The vision is tantalizing: a high-performance, scalable, and widely deployed wireless Internet that facilitates services ranging from radically new and unforeseen applications to true wireless "broadband" to residences and public spaces at rates of 10s of Mb/sec. However, while high-speed wireless access is easy to achieve in an enterprise network via low-cost IEEE 802.11 (WiFi) access points, wireless technology in public spaces is in its infancy. "Hot spots" provide high-speed wireless access, but do so in very few isolated "islands" at immense costs. Likewise, while fixed wireless (e.g. LMDS) and 3G can provide ubiquitous coverage and 3G can support mobility, throughputs can often be two orders of magnitude slower than WiFi.
Ad Hoc Networks, Jan 1, 2003
Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobi... more Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, “ad-hoc” network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET’s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future.
IEEE Communications Magazine, Jan 1, 2003
An unprecedented transformation in the design, deployment, and application of short-range wireles... more An unprecedented transformation in the design, deployment, and application of short-range wireless devices and services is in progress today. This trend is in line with the imminent transition from third- to fourth-generation radio systems, where heterogeneous environments are expected to prevail eventually. A key driver in this transition is the steep growth in both demand and deployment of WLANs/WPANs based on the wireless standards within the IEEE 802 suite. Today, these short-range devices and networks operate mainly standalone in indoor home and office environments or large enclosed public areas, while their integration into the wireless wide-area infrastructure is still nearly nonexistent and far from trivial. This status quo in the short-range wireless application space is about to be disrupted by novel devices and systems based on the emerging UWB radio technology with the potential to provide solutions for many of today's problems in the areas of spectrum management and radio system engineering. The approach employed by UWB radio devices is based on sharing already occupied spectrum resources by means of the overlay principle, rather than looking for still available but possibly unsuitable new bands. This novel radio technology has received legal adoption by the regulatory authorities in the United States, and efforts to achieve this status in Europe and Asia are underway. This article discusses both the application potential and technical challenges presented by UWB radio as an unconventional but promising new wireless technology.
Wireless Communications and Mobile Computing, Jan 1, 2003
Ultra-wideband (UWB) communication techniques have attracted a great interest in both academia an... more Ultra-wideband (UWB) communication techniques have attracted a great interest in both academia and industry in the past few years for applications in short-range wireless mobile systems. This is due to the potential advantages of UWB transmissions such as low power, high rate, immunity to multipath propagation, less complex transceiver hardware, and low interference. However, tremendous R&D efforts are required to face various technical challenges in developing UWB wireless systems, including UWB channel characterization, transceiver design, coexistence and interworking with other narrowband wireless systems, design of the link and network layers to benefit from UWB transmission characteristics. This paper is to provide an overview of UWB communications, summarize the previous research results, and identify further research issues that need to be tackled. The emphasis is placed on the commercial wireless communications. Copyright © 2003 John Wiley & Sons, Ltd.
IEEE Communications Surveys & Tutorials, Jan 1, 2005
Understanding usage patterns in wireless local-area networks (WLANs) is critical for those who de... more Understanding usage patterns in wireless local-area networks (WLANs) is critical for those who develop, deploy, and manage WLAN technology, as well as those who develop systems and application software for wireless networks. This paper presents results from the largest and most comprehensive trace of network activity in a large, production wireless LAN. For eleven weeks we traced the activity of nearly two thousand users drawn from a general campus population, using a campus-wide network of 476 access points spread over 161 buildings at Dartmouth College. Our study expands on those done by Tang and Baker, with a significantly larger and broader population. We found that residential traffic dominated all other traffic, particularly in residences populated by newer students; students are increasingly choosing a wireless laptop as their primary computer. Although web protocols were the single largest component of traffic volume, network backup and file sharing contributed an unexpectedly large amount to the traffic. Although there was some roaming within a network session, we were surprised by the number of situations in which cards roamed excessively, unable to settle on one access point. Cross-subnet roams were an especial problem, because they broke IP connections, indicating the need for solutions that avoid or accommodate such roams.
Computer Networks, Jan 1, 2006
Today’s wireless networks are characterized by a fixed spectrum assignment policy. However, a lar... more Today’s wireless networks are characterized by a fixed spectrum assignment policy. However, a large portion of the assigned spectrum is used sporadically and geographical variations in the utilization of assigned spectrum ranges from 15% to 85% with a high variance in time. The limited available spectrum and the inefficiency in the spectrum usage necessitate a new communication paradigm to exploit the existing wireless spectrum opportunistically. This new networking paradigm is referred to as NeXt Generation (xG) Networks as well as Dynamic Spectrum Access (DSA) and cognitive radio networks. The term xG networks is used throughout the paper. The novel functionalities and current research challenges of the xG networks are explained in detail. More specifically, a brief overview of the cognitive radio technology is provided and the xG network architecture is introduced. Moreover, the xG network functions such as spectrum management, spectrum mobility and spectrum sharing are explained in detail. The influence of these functions on the performance of the upper layer protocols such as routing and transport are investigated and open research issues in these areas are also outlined. Finally, the cross-layer design challenges in xG networks are discussed.
Computer Networks, Jan 1, 2005
Wireless mesh networks (WMNs) consist of mesh routers and mesh clients, where mesh routers have m... more Wireless mesh networks (WMNs) consist of mesh routers and mesh clients, where mesh routers have minimal mobility and form the backbone of WMNs. They provide network access for both mesh and conventional clients. The integration of WMNs with other networks such as the Internet, cellular, IEEE 802.11, IEEE 802.15, IEEE 802.16, sensor networks, etc., can be accomplished through the gateway and bridging functions in the mesh routers. Mesh clients can be either stationary or mobile, and can form a client mesh network among themselves and with mesh routers. WMNs are anticipated to resolve the limitations and to significantly improve the performance of ad hoc networks, wireless local area networks (WLANs), wireless personal area networks (WPANs), and wireless metropolitan area networks (WMANs). They are undergoing rapid progress and inspiring numerous deployments. WMNs will deliver wireless services for a large variety of applications in personal, local, campus, and metropolitan areas. Despite recent advances in wireless mesh networking, many research challenges remain in all protocol layers. This paper presents a detailed study on recent advances and open research issues in WMNs. System architectures and applications of WMNs are described, followed by discussing the critical factors influencing protocol design. Theoretical network capacity and the state-of-the-art protocols for WMNs are explored with an objective to point out a number of open research issues. Finally, testbeds, industrial practice, and current standard activities related to WMNs are highlighted.
Sensor devices integrating embedded processors, low-power, lowbandwidth radios, and a modest amou... more Sensor devices integrating embedded processors, low-power, lowbandwidth radios, and a modest amount of storage have the potential to enhance emergency medical care. Wearable vital sign sensors can track patient status and location, while simultaneously operating as active tags. We introduce CodeBlue, a wireless infrastructure intended for deployment in emergency medical care, integrating low-power, wireless vital sign sensors, PDAs, and PC-class systems. CodeBlue will enhance first responders' ability to assess patients on scene, ensure seamless transfer of data among caregivers, and facilitate efficient allocation of hospital resources. Intended to scale to very dense networks with thousands of devices and extremely volatile network conditions, this infrastructure will support reliable, ad hoc data delivery, a flexible naming and discovery scheme, and a decentralized security model. This paper introduces our architecture and highlights research challenges being addressed by the CodeBlue development effort.
Computer Communication Review, Jan 1, 2004
The vision is tantalizing: a high-performance, scalable, and widely deployed wireless Internet th... more The vision is tantalizing: a high-performance, scalable, and widely deployed wireless Internet that facilitates services ranging from radically new and unforeseen applications to true wireless "broadband" to residences and public spaces at rates of 10s of Mb/sec. However, while high-speed wireless access is easy to achieve in an enterprise network via low-cost IEEE 802.11 (WiFi) access points, wireless technology in public spaces is in its infancy. "Hot spots" provide high-speed wireless access, but do so in very few isolated "islands" at immense costs. Likewise, while fixed wireless (e.g. LMDS) and 3G can provide ubiquitous coverage and 3G can support mobility, throughputs can often be two orders of magnitude slower than WiFi.
Ad Hoc Networks, Jan 1, 2003
Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobi... more Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, “ad-hoc” network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET’s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future.
IEEE Communications Magazine, Jan 1, 2003
An unprecedented transformation in the design, deployment, and application of short-range wireles... more An unprecedented transformation in the design, deployment, and application of short-range wireless devices and services is in progress today. This trend is in line with the imminent transition from third- to fourth-generation radio systems, where heterogeneous environments are expected to prevail eventually. A key driver in this transition is the steep growth in both demand and deployment of WLANs/WPANs based on the wireless standards within the IEEE 802 suite. Today, these short-range devices and networks operate mainly standalone in indoor home and office environments or large enclosed public areas, while their integration into the wireless wide-area infrastructure is still nearly nonexistent and far from trivial. This status quo in the short-range wireless application space is about to be disrupted by novel devices and systems based on the emerging UWB radio technology with the potential to provide solutions for many of today's problems in the areas of spectrum management and radio system engineering. The approach employed by UWB radio devices is based on sharing already occupied spectrum resources by means of the overlay principle, rather than looking for still available but possibly unsuitable new bands. This novel radio technology has received legal adoption by the regulatory authorities in the United States, and efforts to achieve this status in Europe and Asia are underway. This article discusses both the application potential and technical challenges presented by UWB radio as an unconventional but promising new wireless technology.