Shannon Mahan | United States Geological Survey (original) (raw)

Papers by Shannon Mahan

Research paper thumbnail of Origin of Bermuda's clay-rich Quaternary paleosols and their paleoclimatic significance

Journal of Geophysical Research, 1996

Red clayey paleosols that are chiefly the product of aerosolic dust deposition are interbedded in... more Red clayey paleosols that are chiefly the product of aerosolic dust deposition are interbedded in the Quaternary carbonate formations of the Bermuda oceanic island system. These paleosols provide a basis for reconstructing Quaternary atmospheric circulation patterns in the northwestern Atlantic. Geochemical analyses were performed on representative paleosol samples to identify their parent dust source. Fine-grained fractions were analyzed by energy-dispersive X ray fluorescence to determine trace element (Zr, Y, La, Ti, and Nb) concentrations and to derive geochemical signatures based on immobile element ratios. These ratios were compared with geochemical signatures determined for three possible sources of airborne dust: (1) Great Plains loess, (2) Mississippi River Valley loess, and (3) Saharan dust. The Zr/Y and Zr/La ratios provided the clearest distinction between the hypothesized dust sources. The low ratios in the paleosol B horizons most closely resemble Saharan dust in the <2-μm size class fraction. Contributions from the two North American loessial source areas could not be clearly detected. Thus Bermuda paleosols have a predominantly Saharan aerosolic dust signature. Saharan dust deposition on Bermuda during successive Quaternary glacial periods is consistent with patterns of general circulation models, which indicate that during glacial maxima the northeast summer trade winds were stronger than at present and reached latitudes higher than 30°N despite lower-than-present sea surface temperatures in the North Atlantic.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Origin of the late Quaternary dune fields of northeastern Colorado

Geomorphology, 1996

Stabilized eolian deposits, mostly parabolic dunes and sand sheets, cover much of the landscape o... more Stabilized eolian deposits, mostly parabolic dunes and sand sheets, cover much of the landscape of northeastern Colorado and adjacent parts of southwestern Nebraska in four geographically distinct dune fields. Stratigraphic and soil-geomorphic relations and accelerator radiocarbon dating indicate that at least three episodes of eolian sand movement occurred between 27 ka and 11 ka, possibly between 11 ka and 4 ka, and within the past 1.5 ka. Thus, eolian sand deposition took place under both glacial and interglacial climatic conditions. In the youngest episodes of eolian sand movement, Holocene parabolic dunes partially buried Pleistocene sand sheet deposits.Late Holocene sands in the Fort Morgan and Wray dune fields, to the south of the South Platte River, have trace element ratios that are indistinguishable from modern South Platte River sands, but different from Ogallala Formation bedrock, which has previously been cited as the main source of dune sand on the Great Plains. Sands in the Greeley dune field, to the north of the South Platte River, have trace element concentrations that indicate a probable Laramie Formation source. Measurements of parabolic dunes indicate paleowinds from the northwest in all dune fields, in good agreement with resultant drift directions calculated for nearby weather stations. Thus, paleowinds were probably not significantly different from present-day winds, and are consistent with a South Platte River source for the Fort Morgan and Wray dune fields, and a Laramie Formation source for the Greeley dune field. Sand accumulated downwind of the South Platte River to form the Fort Morgan duen field. In addition, sand was also transported farther downwind over the upland formed by the calcrete caprock of the Ogallala Formation, and deposited in the lee of the upland on the southeast side. Because of high wind energy, the upland itself served as a zone of sand transport, but little or no sand accumulation took place on this surface.These studies, which demonstrate the importance of fluvial-source sediments for dune fields in Colorado, may be applicable to other dune fields in North America. Because modern drift potentials in northeastern Colorado are among the highest in the world, the present stability of dunes in the region may be in part a function of the dunes being supply-limited rather than solely transport-limited. Extensive (∼ 7700 km2) late Holocene dunes document that eolian sand in northeastern Colorado is very sensitive to small changes in climate or fluvial source conditions.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Late Holocene eolian activity in the mineralogically mature Nebraska Sand Hills

Bookmarks Related papers MentionsView impact

Research paper thumbnail of A loess–paleosol record of climate and glacial history over the past two glacial–interglacial cycles (~ 150 ka), southern Jackson Hole, Wyoming

Quaternary Research, 2011

Loess accumulated on a Bull Lake outwash terrace of Marine Oxygen Isotope Stage 6 (MIS 6) age in ... more Loess accumulated on a Bull Lake outwash terrace of Marine Oxygen Isotope Stage 6 (MIS 6) age in southern Jackson Hole, Wyoming. The 9 m section displays eight intervals of loess deposition (Loess 1 to Loess 8, oldest), each followed by soil development. Our age-depth model is constrained by thermoluminescence, meteoric 10Be accumulation in soils, and cosmogenic 10Be surface exposure ages. We use particle size, geochemical, mineral-magnetic, and clay mineralogical data to interpret loess sources and pedogenesis. Deposition of MIS 6 loess was followed by a tripartite soil/thin loess complex (Soils 8, 7, and 6) apparently reflecting the large climatic oscillations of MIS 5. Soil 8 (MIS 5e) shows the strongest development. Loess 5 accumulated during a glacial interval (~ 76–69 ka; MIS 4) followed by soil development under conditions wetter and probably colder than present. Deposition of thick Loess 3 (~ 43–51 ka, MIS 3) was followed by soil development comparable with that observed in Soil 1. Loess 1 (MIS 2) accumulated during the Pinedale glaciation and was followed by development of Soil 1 under a semiarid climate. This record of alternating loess deposition and soil development is compatible with the history of Yellowstone vegetation and the glacial flour record from the Sierra Nevada.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Holocene eolian activity in the Minot dune field, North Dakota

Canadian Journal of Earth Sciences, 1997

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Origin of Bermuda's clay-rich Quaternary paleosols and their paleoclimatic significance

Journal of Geophysical Research, 1996

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Geochemical Evidence for an Eolian Sand Dam across the North and South Platte Rivers in Nebraska

Quaternary Research, 2000

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Late Holocene Eolian Activity in the Mineralogically Mature Nebraska Sand Hills

Quaternary Research, 1997

The age of sand dunes in the Nebraska Sand Hills has been controversial, with some investigators ... more The age of sand dunes in the Nebraska Sand Hills has been controversial, with some investigators suggesting a full-glacial age and others suggesting that they were last active in the late Holocene. New accelerator mass spectrometry radiocarbon ages of unaltered bison bones and organic-rich sediments suggest that eolian sand deposition occurred at least twice in the past 300014C yr B.P. in three widely separated localities and as many as three times in the past 80014C yr at three other localities. These late Holocene episodes of eolian activity are probably the result of droughts more intense than the 1930s “Dust Bowl” period, based on independent Great Plains climate records from lake sediments and tree rings. However, new geochemical data indicate that the Nebraska Sand Hills are mineralogically mature. Eolian sands in Nebraska have lower K-feldspar (and K2O, Rb, and Ba) contents than most possible source sediments and lower K-feldspar contents than dunes of similar age in Colorado. The most likely explanation for mineralogical maturity is reduction of sand-sized K-feldspar to silt-sized particles via ballistic impacts due to strong winds over many cycles of eolian activity. Therefore, dunes of the Nebraska Sand Hills must have had a long history, probably extending over more than one glacial–interglacial cycle, and the potential for reactivation is high, with or without a future greenhouse warming.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Holocene landscape response to seasonality of storms in the Mojave Desert

Quaternary International, 2010

New optically stimulated and radiocarbon ages for alluvial fan and lake deposits in the Mojave De... more New optically stimulated and radiocarbon ages for alluvial fan and lake deposits in the Mojave Desert are presented, which greatly improves the temporal resolution of surface processes. The new Mojave Desert climate-landscape record is particularly detailed for the late Holocene. Evidence from ephemeral lake deposits and landforms indicates times of sustained stream flow during a wet interval of the latter part of the Medieval Warm Period at ca. AD 1290 and during the Little Ice Age at ca. AD 1650. The former lakes postdate megadroughts of the Medieval Warm Period, whereas the latter match the Maunder Minimum of the Little Ice Age. Periods of alluvial fan aggradation across the Mojave Desert are 14–9 cal ka and 6–3 cal ka. This timing largely correlates to times of increased sea-surface temperatures in the Gulf of California and enhanced warm-season monsoons. This correlation suggests that sustained alluvial fan aggradation may be driven by intense summer-season storms. These data suggest that the close proximity of the Mojave Desert to the Pacific Ocean and the Gulf of California promotes a partitioning of landscape-process responses to climate forcings that vary with seasonality of the dominant storms. Cool-season Pacific frontal storms cause river flow, ephemeral lakes, and fan incision, whereas periods of intense warm-season storms cause hillslope erosion and alluvial fan aggradation. The proposed landscape-process partitioning has important implications for hazard mitigation given that climate change may increase sea-surface temperatures in the Gulf of California, which indirectly could increase future alluvial fan aggradation.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Holocene landscape response to seasonality of storms in the Mojave Desert

Quaternary International, 2010

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Numerical dating of a Late Quaternary spit-shoreline complex at the northern end of Silver Lake playa, Mojave Desert, California: A comparison of the applicability of radiocarbon, luminescence, terrestrial cosmogenic nuclide, electron spin resonance, U-series and amino acid racemization methods

Quaternary International, 2007

A Late Quaternary spit-shoreline complex on the northern shore of Pleistocene Lake Mojave of sout... more A Late Quaternary spit-shoreline complex on the northern shore of Pleistocene Lake Mojave of southeastern California, USA was studied with the goal of comparing accelerator mass spectrometry (AMS) radiocarbon, luminescence, electron spin resonance (ESR), terrestrial cosmogenic radionuclide (TCN) surface exposure, amino acid racemization (AAR) and U-series dating methods. The pattern of ages obtained by the different methods illustrates the complexity of processes acting in the lakeshore environment and highlights the utility of a multi-method approach. TCN surface exposure ages (mostly ∼20–30 ka) record the initial erosion of shoreline benches, whereas radiocarbon ages on shells (determined in this and previous studies) within the spit, supported by AAR data, record its construction at fluctuating lake levels from ∼16 to 10 ka. Luminescence ages on spit sediment (∼6–7 ka) and ESR ages on spit shells (∼4 ka) are anomalously young relative to radiocarbon ages of shells within the same deposits. The significance of the surprisingly young luminescence ages is not clear. The younger ESR ages could be a consequence of post-mortem enrichment of U in the shells. High concentrations of detrital thorium in tufa coating spit gravels inhibited the use of single-sample U-series dating. Detailed comparisons such as this provide one of the few means of assessing the accuracy of Quaternary dating techniques. More such comparisons are needed.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Late Pleistocene paleohydrology near the boundary of the Sonoran and Chihuahuan Deserts, southeastern Arizona, USA

Quaternary Science Reviews, 2009

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Late Quaternary glaciation of the Upper Soča River Region (Southern Julian Alps, NW Slovenia

Sedimentary Geology, 2004

Extent of Late Quaternary glaciers in the Upper Soča River Region (Southern Julian Alps, SE Europ... more Extent of Late Quaternary glaciers in the Upper Soča River Region (Southern Julian Alps, SE Europe) has been analyzed using a combination of geological mapping, glaciological modeling, and sediment dating (radiocarbon, U/Th series and Infrared Stimulated Luminescence-IRSL). Field investigations focused mainly on relatively well preserved Quaternary sequences in the Bovec Basin, an intramontane basin located SW of the Mediterranean/Black Sea divide and surrounded by mountain peaks reaching from approximately 2100 up to 2587 m a.s.l. Within the Basin we recognized two Late Quaternary sedimentary assemblages, which consist of the same facies association of diamictons, laminated lacustrine deposits and sorted fluvial sediments. Radiocarbon dating of the upper part of the lake sediments sequence (between 12790±85 and 5885±60 14C years b.p.) indicates that the younger sedimentary assemblage was deposited during the last glacial maximum and through early Holocene (Marine Isotope Stage 21, MIS 2-1). Sediment ages obtained for the older assemblage with U/Th and IRSL techniques (between 154.74±22.88 and 129.93±7.90 ka b.p. for selected samples) have large errors but both methods yield results consistent with deposition during the penultimate glacial–interglacial transition (MIS 6–5). Based on analyses of field data combined with glaciological modeling, we argue that both sediment complexes formed due to high sediment productivity spurred by paraglacial conditions with glaciers present in the uplands around the Bovec Basin but not extending down to the basin floor. Our study shows that the extent and intensity of direct glacial sedimentation by Late Quaternary glaciers in the region was previously significantly overestimated.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of New optically stimulated luminescence ages provide evidence of MIS3 and MIS2 eolian activity on Black Mesa, northeastern Arizona, USA

Quaternary Research, 2011

Eolian deposition on the semiarid southern Colorado Plateau has been attributed to episodic aridi... more Eolian deposition on the semiarid southern Colorado Plateau has been attributed to episodic aridity during the Quaternary Period. However, OSL ages from three topographically controlled (e.g. falling) dunes on Black Mesa in northeastern Arizona indicate that eolian sediments there were deposited in deep tributary valleys as early as 35–30 ka, with most sand deposited before 20 ka. In contrast, the oldest OSL ages for sand sheets fall within the Pleistocene-Holocene climatic transition (~ 12–8 ka). Thus most eolian sediment accumulated on Black Mesa under climatic conditions that were in general cooler, moister, and more variable than today, not more arid, pointing to a considerable increase in sediment supply.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Optically stimulated luminescence age controls on late Pleistocene and Holocene coastal lithosomes, North Carolina, USA

Quaternary Research, 2008

Luminescence ages from a variety of coastal features on the North Carolina Coastal Plain provide ... more Luminescence ages from a variety of coastal features on the North Carolina Coastal Plain provide age control for shoreline formation and relative sea-level position during the late Pleistocene. A series of paleoshoreline ridges, dating to Marine Isotope Stage (MIS) 5a and MIS 3 have been defined. The Kitty Hawk beach ridges, on the modern Outer Banks, yield ages of 3 to 2 ka. Oxygen-isotope data are used to place these deposits in the context of global climate and sea-level change. The occurrence of MIS 5a and MIS 3 shorelines suggests that glacio-isostatic adjustment (GIA) of the study area is large (ca. 22 to 26 m), as suggested and modeled by other workers, and/or MIS 3 sea level was briefly higher than suggested by some coral reef studies. Correcting the shoreline elevations for GIA brings their elevation in line with other sea-level indicators. The age of the Kitty Hawk beach ridges places the Holocene shoreline well west of its present location at ca. 3 to 2 ka. The age of shoreline progradation is consistent with the ages of other beach ridge complexes in the southeast USA, suggesting some regionally contemporaneous forcing mechanism.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Barrier island response to late Holocene climate events, North Carolina, USA

Quaternary Research, 2011

The Outer Banks barrier islands of North Carolina, USA, contain a geologic record of inlet activi... more The Outer Banks barrier islands of North Carolina, USA, contain a geologic record of inlet activity that extends from ca. 2200 cal yr BP to the present, and can be used as a proxy for storm activity. Optically stimulated luminescence (OSL) dating (26 samples) of inlet-fill and flood tide delta deposits, recognized in cores and geophysical data, provides the basis for understanding the chronology of storm impacts and comparison to other paleoclimate proxy data. OSL ages of historical inlet fill compare favorably to historical documentation of inlet activity, providing confidence in the technique. Comparison suggests that the Medieval Warm Period (MWP) and Little Ice Age (LIA) were both characterized by elevated storm conditions as indicated by much greater inlet activity relative to today. Given present understanding of atmospheric circulation patterns and sea-surface temperatures during the MWP and LIA, we suggest that increased inlet activity during the MWP responded to intensified hurricane impacts, while elevated inlet activity during the LIA was in response to increased nor'easter activity. A general decrease in storminess at mid-latitudes in the North Atlantic over the last 300 yr has allowed the system to evolve into a more continuous barrier with few inlets.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Origin of Bermuda's clay-rich Quaternary paleosols and their paleoclimatic significance

Journal of Geophysical Research, 1996

Red clayey paleosols that are chiefly the product of aerosolic dust deposition are interbedded in... more Red clayey paleosols that are chiefly the product of aerosolic dust deposition are interbedded in the Quaternary carbonate formations of the Bermuda oceanic island system. These paleosols provide a basis for reconstructing Quaternary atmospheric circulation patterns in the northwestern Atlantic. Geochemical analyses were performed on representative paleosol samples to identify their parent dust source. Fine-grained fractions were analyzed by energy-dispersive X ray fluorescence to determine trace element (Zr, Y, La, Ti, and Nb) concentrations and to derive geochemical signatures based on immobile element ratios. These ratios were compared with geochemical signatures determined for three possible sources of airborne dust: (1) Great Plains loess, (2) Mississippi River Valley loess, and (3) Saharan dust. The Zr/Y and Zr/La ratios provided the clearest distinction between the hypothesized dust sources. The low ratios in the paleosol B horizons most closely resemble Saharan dust in the <2-μm size class fraction. Contributions from the two North American loessial source areas could not be clearly detected. Thus Bermuda paleosols have a predominantly Saharan aerosolic dust signature. Saharan dust deposition on Bermuda during successive Quaternary glacial periods is consistent with patterns of general circulation models, which indicate that during glacial maxima the northeast summer trade winds were stronger than at present and reached latitudes higher than 30°N despite lower-than-present sea surface temperatures in the North Atlantic.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Origin of the late Quaternary dune fields of northeastern Colorado

Geomorphology, 1996

Stabilized eolian deposits, mostly parabolic dunes and sand sheets, cover much of the landscape o... more Stabilized eolian deposits, mostly parabolic dunes and sand sheets, cover much of the landscape of northeastern Colorado and adjacent parts of southwestern Nebraska in four geographically distinct dune fields. Stratigraphic and soil-geomorphic relations and accelerator radiocarbon dating indicate that at least three episodes of eolian sand movement occurred between 27 ka and 11 ka, possibly between 11 ka and 4 ka, and within the past 1.5 ka. Thus, eolian sand deposition took place under both glacial and interglacial climatic conditions. In the youngest episodes of eolian sand movement, Holocene parabolic dunes partially buried Pleistocene sand sheet deposits.Late Holocene sands in the Fort Morgan and Wray dune fields, to the south of the South Platte River, have trace element ratios that are indistinguishable from modern South Platte River sands, but different from Ogallala Formation bedrock, which has previously been cited as the main source of dune sand on the Great Plains. Sands in the Greeley dune field, to the north of the South Platte River, have trace element concentrations that indicate a probable Laramie Formation source. Measurements of parabolic dunes indicate paleowinds from the northwest in all dune fields, in good agreement with resultant drift directions calculated for nearby weather stations. Thus, paleowinds were probably not significantly different from present-day winds, and are consistent with a South Platte River source for the Fort Morgan and Wray dune fields, and a Laramie Formation source for the Greeley dune field. Sand accumulated downwind of the South Platte River to form the Fort Morgan duen field. In addition, sand was also transported farther downwind over the upland formed by the calcrete caprock of the Ogallala Formation, and deposited in the lee of the upland on the southeast side. Because of high wind energy, the upland itself served as a zone of sand transport, but little or no sand accumulation took place on this surface.These studies, which demonstrate the importance of fluvial-source sediments for dune fields in Colorado, may be applicable to other dune fields in North America. Because modern drift potentials in northeastern Colorado are among the highest in the world, the present stability of dunes in the region may be in part a function of the dunes being supply-limited rather than solely transport-limited. Extensive (∼ 7700 km2) late Holocene dunes document that eolian sand in northeastern Colorado is very sensitive to small changes in climate or fluvial source conditions.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Late Holocene eolian activity in the mineralogically mature Nebraska Sand Hills

Bookmarks Related papers MentionsView impact

Research paper thumbnail of A loess–paleosol record of climate and glacial history over the past two glacial–interglacial cycles (~ 150 ka), southern Jackson Hole, Wyoming

Quaternary Research, 2011

Loess accumulated on a Bull Lake outwash terrace of Marine Oxygen Isotope Stage 6 (MIS 6) age in ... more Loess accumulated on a Bull Lake outwash terrace of Marine Oxygen Isotope Stage 6 (MIS 6) age in southern Jackson Hole, Wyoming. The 9 m section displays eight intervals of loess deposition (Loess 1 to Loess 8, oldest), each followed by soil development. Our age-depth model is constrained by thermoluminescence, meteoric 10Be accumulation in soils, and cosmogenic 10Be surface exposure ages. We use particle size, geochemical, mineral-magnetic, and clay mineralogical data to interpret loess sources and pedogenesis. Deposition of MIS 6 loess was followed by a tripartite soil/thin loess complex (Soils 8, 7, and 6) apparently reflecting the large climatic oscillations of MIS 5. Soil 8 (MIS 5e) shows the strongest development. Loess 5 accumulated during a glacial interval (~ 76–69 ka; MIS 4) followed by soil development under conditions wetter and probably colder than present. Deposition of thick Loess 3 (~ 43–51 ka, MIS 3) was followed by soil development comparable with that observed in Soil 1. Loess 1 (MIS 2) accumulated during the Pinedale glaciation and was followed by development of Soil 1 under a semiarid climate. This record of alternating loess deposition and soil development is compatible with the history of Yellowstone vegetation and the glacial flour record from the Sierra Nevada.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Holocene eolian activity in the Minot dune field, North Dakota

Canadian Journal of Earth Sciences, 1997

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Origin of Bermuda's clay-rich Quaternary paleosols and their paleoclimatic significance

Journal of Geophysical Research, 1996

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Geochemical Evidence for an Eolian Sand Dam across the North and South Platte Rivers in Nebraska

Quaternary Research, 2000

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Late Holocene Eolian Activity in the Mineralogically Mature Nebraska Sand Hills

Quaternary Research, 1997

The age of sand dunes in the Nebraska Sand Hills has been controversial, with some investigators ... more The age of sand dunes in the Nebraska Sand Hills has been controversial, with some investigators suggesting a full-glacial age and others suggesting that they were last active in the late Holocene. New accelerator mass spectrometry radiocarbon ages of unaltered bison bones and organic-rich sediments suggest that eolian sand deposition occurred at least twice in the past 300014C yr B.P. in three widely separated localities and as many as three times in the past 80014C yr at three other localities. These late Holocene episodes of eolian activity are probably the result of droughts more intense than the 1930s “Dust Bowl” period, based on independent Great Plains climate records from lake sediments and tree rings. However, new geochemical data indicate that the Nebraska Sand Hills are mineralogically mature. Eolian sands in Nebraska have lower K-feldspar (and K2O, Rb, and Ba) contents than most possible source sediments and lower K-feldspar contents than dunes of similar age in Colorado. The most likely explanation for mineralogical maturity is reduction of sand-sized K-feldspar to silt-sized particles via ballistic impacts due to strong winds over many cycles of eolian activity. Therefore, dunes of the Nebraska Sand Hills must have had a long history, probably extending over more than one glacial–interglacial cycle, and the potential for reactivation is high, with or without a future greenhouse warming.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Holocene landscape response to seasonality of storms in the Mojave Desert

Quaternary International, 2010

New optically stimulated and radiocarbon ages for alluvial fan and lake deposits in the Mojave De... more New optically stimulated and radiocarbon ages for alluvial fan and lake deposits in the Mojave Desert are presented, which greatly improves the temporal resolution of surface processes. The new Mojave Desert climate-landscape record is particularly detailed for the late Holocene. Evidence from ephemeral lake deposits and landforms indicates times of sustained stream flow during a wet interval of the latter part of the Medieval Warm Period at ca. AD 1290 and during the Little Ice Age at ca. AD 1650. The former lakes postdate megadroughts of the Medieval Warm Period, whereas the latter match the Maunder Minimum of the Little Ice Age. Periods of alluvial fan aggradation across the Mojave Desert are 14–9 cal ka and 6–3 cal ka. This timing largely correlates to times of increased sea-surface temperatures in the Gulf of California and enhanced warm-season monsoons. This correlation suggests that sustained alluvial fan aggradation may be driven by intense summer-season storms. These data suggest that the close proximity of the Mojave Desert to the Pacific Ocean and the Gulf of California promotes a partitioning of landscape-process responses to climate forcings that vary with seasonality of the dominant storms. Cool-season Pacific frontal storms cause river flow, ephemeral lakes, and fan incision, whereas periods of intense warm-season storms cause hillslope erosion and alluvial fan aggradation. The proposed landscape-process partitioning has important implications for hazard mitigation given that climate change may increase sea-surface temperatures in the Gulf of California, which indirectly could increase future alluvial fan aggradation.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Holocene landscape response to seasonality of storms in the Mojave Desert

Quaternary International, 2010

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Numerical dating of a Late Quaternary spit-shoreline complex at the northern end of Silver Lake playa, Mojave Desert, California: A comparison of the applicability of radiocarbon, luminescence, terrestrial cosmogenic nuclide, electron spin resonance, U-series and amino acid racemization methods

Quaternary International, 2007

A Late Quaternary spit-shoreline complex on the northern shore of Pleistocene Lake Mojave of sout... more A Late Quaternary spit-shoreline complex on the northern shore of Pleistocene Lake Mojave of southeastern California, USA was studied with the goal of comparing accelerator mass spectrometry (AMS) radiocarbon, luminescence, electron spin resonance (ESR), terrestrial cosmogenic radionuclide (TCN) surface exposure, amino acid racemization (AAR) and U-series dating methods. The pattern of ages obtained by the different methods illustrates the complexity of processes acting in the lakeshore environment and highlights the utility of a multi-method approach. TCN surface exposure ages (mostly ∼20–30 ka) record the initial erosion of shoreline benches, whereas radiocarbon ages on shells (determined in this and previous studies) within the spit, supported by AAR data, record its construction at fluctuating lake levels from ∼16 to 10 ka. Luminescence ages on spit sediment (∼6–7 ka) and ESR ages on spit shells (∼4 ka) are anomalously young relative to radiocarbon ages of shells within the same deposits. The significance of the surprisingly young luminescence ages is not clear. The younger ESR ages could be a consequence of post-mortem enrichment of U in the shells. High concentrations of detrital thorium in tufa coating spit gravels inhibited the use of single-sample U-series dating. Detailed comparisons such as this provide one of the few means of assessing the accuracy of Quaternary dating techniques. More such comparisons are needed.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Late Pleistocene paleohydrology near the boundary of the Sonoran and Chihuahuan Deserts, southeastern Arizona, USA

Quaternary Science Reviews, 2009

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Late Quaternary glaciation of the Upper Soča River Region (Southern Julian Alps, NW Slovenia

Sedimentary Geology, 2004

Extent of Late Quaternary glaciers in the Upper Soča River Region (Southern Julian Alps, SE Europ... more Extent of Late Quaternary glaciers in the Upper Soča River Region (Southern Julian Alps, SE Europe) has been analyzed using a combination of geological mapping, glaciological modeling, and sediment dating (radiocarbon, U/Th series and Infrared Stimulated Luminescence-IRSL). Field investigations focused mainly on relatively well preserved Quaternary sequences in the Bovec Basin, an intramontane basin located SW of the Mediterranean/Black Sea divide and surrounded by mountain peaks reaching from approximately 2100 up to 2587 m a.s.l. Within the Basin we recognized two Late Quaternary sedimentary assemblages, which consist of the same facies association of diamictons, laminated lacustrine deposits and sorted fluvial sediments. Radiocarbon dating of the upper part of the lake sediments sequence (between 12790±85 and 5885±60 14C years b.p.) indicates that the younger sedimentary assemblage was deposited during the last glacial maximum and through early Holocene (Marine Isotope Stage 21, MIS 2-1). Sediment ages obtained for the older assemblage with U/Th and IRSL techniques (between 154.74±22.88 and 129.93±7.90 ka b.p. for selected samples) have large errors but both methods yield results consistent with deposition during the penultimate glacial–interglacial transition (MIS 6–5). Based on analyses of field data combined with glaciological modeling, we argue that both sediment complexes formed due to high sediment productivity spurred by paraglacial conditions with glaciers present in the uplands around the Bovec Basin but not extending down to the basin floor. Our study shows that the extent and intensity of direct glacial sedimentation by Late Quaternary glaciers in the region was previously significantly overestimated.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of New optically stimulated luminescence ages provide evidence of MIS3 and MIS2 eolian activity on Black Mesa, northeastern Arizona, USA

Quaternary Research, 2011

Eolian deposition on the semiarid southern Colorado Plateau has been attributed to episodic aridi... more Eolian deposition on the semiarid southern Colorado Plateau has been attributed to episodic aridity during the Quaternary Period. However, OSL ages from three topographically controlled (e.g. falling) dunes on Black Mesa in northeastern Arizona indicate that eolian sediments there were deposited in deep tributary valleys as early as 35–30 ka, with most sand deposited before 20 ka. In contrast, the oldest OSL ages for sand sheets fall within the Pleistocene-Holocene climatic transition (~ 12–8 ka). Thus most eolian sediment accumulated on Black Mesa under climatic conditions that were in general cooler, moister, and more variable than today, not more arid, pointing to a considerable increase in sediment supply.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Optically stimulated luminescence age controls on late Pleistocene and Holocene coastal lithosomes, North Carolina, USA

Quaternary Research, 2008

Luminescence ages from a variety of coastal features on the North Carolina Coastal Plain provide ... more Luminescence ages from a variety of coastal features on the North Carolina Coastal Plain provide age control for shoreline formation and relative sea-level position during the late Pleistocene. A series of paleoshoreline ridges, dating to Marine Isotope Stage (MIS) 5a and MIS 3 have been defined. The Kitty Hawk beach ridges, on the modern Outer Banks, yield ages of 3 to 2 ka. Oxygen-isotope data are used to place these deposits in the context of global climate and sea-level change. The occurrence of MIS 5a and MIS 3 shorelines suggests that glacio-isostatic adjustment (GIA) of the study area is large (ca. 22 to 26 m), as suggested and modeled by other workers, and/or MIS 3 sea level was briefly higher than suggested by some coral reef studies. Correcting the shoreline elevations for GIA brings their elevation in line with other sea-level indicators. The age of the Kitty Hawk beach ridges places the Holocene shoreline well west of its present location at ca. 3 to 2 ka. The age of shoreline progradation is consistent with the ages of other beach ridge complexes in the southeast USA, suggesting some regionally contemporaneous forcing mechanism.

Bookmarks Related papers MentionsView impact

Research paper thumbnail of Barrier island response to late Holocene climate events, North Carolina, USA

Quaternary Research, 2011

The Outer Banks barrier islands of North Carolina, USA, contain a geologic record of inlet activi... more The Outer Banks barrier islands of North Carolina, USA, contain a geologic record of inlet activity that extends from ca. 2200 cal yr BP to the present, and can be used as a proxy for storm activity. Optically stimulated luminescence (OSL) dating (26 samples) of inlet-fill and flood tide delta deposits, recognized in cores and geophysical data, provides the basis for understanding the chronology of storm impacts and comparison to other paleoclimate proxy data. OSL ages of historical inlet fill compare favorably to historical documentation of inlet activity, providing confidence in the technique. Comparison suggests that the Medieval Warm Period (MWP) and Little Ice Age (LIA) were both characterized by elevated storm conditions as indicated by much greater inlet activity relative to today. Given present understanding of atmospheric circulation patterns and sea-surface temperatures during the MWP and LIA, we suggest that increased inlet activity during the MWP responded to intensified hurricane impacts, while elevated inlet activity during the LIA was in response to increased nor'easter activity. A general decrease in storminess at mid-latitudes in the North Atlantic over the last 300 yr has allowed the system to evolve into a more continuous barrier with few inlets.

Bookmarks Related papers MentionsView impact