Johan-Owen De Craene | Université François-Rabelais, Tours (original) (raw)

Papers by Johan-Owen De Craene

Research paper thumbnail of Amino Acid Signaling in <i>Saccharomyces cerevisiae</i>: a Permease-Like Sensor of External Amino Acids and F-Box Protein Grr1p Are Required for Transcriptional Induction of the <i>AGP1</i> Gene, Which Encodes a Broad-Specificity Amino Acid Permease

Molecular and Cellular Biology, Feb 1, 1999

HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific re... more HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires

Research paper thumbnail of Exploiting Spermidine <i>N</i>-Hydroxycinnamoyltransferase Diversity and Substrate Promiscuity to Produce Various Trihydroxycinnamoyl Spermidines and Analogues in Engineered Yeast

ACS Synthetic Biology, Jan 15, 2021

Trihydroxycinnamoyl spermidines (THCSpd) are plant specialized metabolites with promising pharmac... more Trihydroxycinnamoyl spermidines (THCSpd) are plant specialized metabolites with promising pharmacological activities as antifungals, antibacterial, antiviral, and antidepressant drugs. However, their characterization and potential pharmaceutical exploitation are greatly impaired by the sourcing of these compounds, restricted to the pollen of core Eudicot plant species. In this work, we developed a precursor-directed biosynthesis of THCSpd in yeast using a dual enzymatic system based on 4-coumarate-CoA ligases (4CL) and spermidine N-hydroxycinnamoyltransferases (SHT). The system relies on the yeast endogenous spermidine pool and only requires hydroxycinnamic acids as exogenous precursors. By exploring 4CL isoforms and SHT diversity among plants, we have driven the production of 8 natural THCSpd, using single or mixed hydroxycinnamic acid precursors. Substrate promiscuities of 4CL and SHT were genuinely exploited to produce 8 new-to-nature THCSpd from exotic hydroxycinnamic and dihydrohydroxycinnamic acids, together with 3 new-to-nature THCSpd containing halogenated hydroxycinnamoyl moieties. In this work, we established a versatile and modular biotechnological production platform allowing the tailor-made THCSpd synthesis, constituting pioneer metabolic engineering for access to these valuable natural products.

Research paper thumbnail of Yeast as a simple eukaryotic model to study human diseases linked to membrane trafficking

Research paper thumbnail of Bi-Genomic Mitochondrial-Split-GFP – the yeast system for screening the mitochondrial matrix echoforms of dually localized proteins

Biochimica et Biophysica Acta (BBA) - Bioenergetics

Research paper thumbnail of Exploiting Spermidine NHydroxycinnamoyltransferase Diversity and Substrate Promiscuity to Produce Various Trihydroxycinnamoyl Spermidines and Analogues in Engineered Yeast

Trihydroxycinnamoyl spermidines (THCSpd) are plant specialized metabolites with promising pharmac... more Trihydroxycinnamoyl spermidines (THCSpd) are plant specialized metabolites with promising pharmacological activities as antifungals, antibacterial, antiviral, and antidepressant drugs. However, their characterization and potential pharmaceutical exploitation are greatly impaired by the sourcing of these compounds, restricted to the pollen of core Eudicot plant species. In this work, we developed a precursor-directed biosynthesis of THCSpd in yeast using a dual enzymatic system based on 4-coumarate-CoA ligases (4CL) and spermidine N-hydroxycinnamoyltransferases (SHT). The system relies on the yeast endogenous spermidine pool and only requires hydroxycinnamic acids as exogenous precursors. By exploring 4CL isoforms and SHT diversity among plants, we have driven the production of 8 natural THCSpd, using single or mixed hydroxycinnamic acid precursors. Substrate promiscuities of 4CL and SHT were genuinely exploited to produce 8 new-to-nature THCSpd from exotic hydroxycinnamic and dihydrohydroxycinnamic acids, together with 3 new-to-nature THCSpd containing halogenated hydroxycinnamoyl moieties. In this work, we established a versatile and modular biotechnological production platform allowing the tailor-made THCSpd synthesis, constituting pioneer metabolic engineering for access to these valuable natural products.

Research paper thumbnail of Content Alerts

This article cites 79 articles, 27 of which can be accessed free

Research paper thumbnail of Cex1 is a component of the COPI intracellular trafficking machinery

Biology Open, 2021

COPI (coatomer complex I) coated vesicles are involved in Golgi-to-ER and intra-Golgi trafficking... more COPI (coatomer complex I) coated vesicles are involved in Golgi-to-ER and intra-Golgi trafficking pathways, and mediate retrieval of ER resident proteins. Functions and components of the COPI-mediated trafficking pathways, beyond the canonical set of Sec/Arf proteins, are constantly increasing in number and complexity. In mammalian cells, GORAB, SCYL1 and SCYL3 proteins regulate Golgi morphology and protein glycosylation in concert with the COPI machinery. Here, we show that Cex1, homologous to the mammalian SCYL proteins, is a component of the yeast COPI machinery, by interacting with Sec27, Sec28 and Sec33 (Ret1/Cop1) proteins of the COPI coat. Cex1 was initially reported to mediate channeling of aminoacylated tRNA outside of the nucleus. Our data show that Cex1 localizes at membrane compartments, on structures positive for the Sec33 α-COP subunit. Moreover, the Wbp1 protein required for N-glycosylation and interacting via its di-lysine motif with the Sec27 β′-COP subunit is mis-t...

Research paper thumbnail of Optimization of Tabersonine Methoxylation to Increase Vindoline Precursor Synthesis in Yeast Cell Factories

Plant specialized metabolites are widely used in the pharmaceutical industry, including the monot... more Plant specialized metabolites are widely used in the pharmaceutical industry, including the monoterpene indole alkaloids (MIAs) vinblastine and vincristine, which both display anticancer activity. Both compounds can be obtained through the chemical condensation of their precursors vindoline and catharanthine extracted from leaves of the Madagascar periwinkle. However, the extensive use of these molecules in chemotherapy increases precursor demand and results in recurrent shortages, explaining why the development of alternative production approaches, such microbial cell factories, is mandatory. In this context, the precursor-directed biosynthesis of vindoline from tabersonine in yeast-expressing heterologous biosynthetic genes is of particular interest but has not reached high production scales to date. To circumvent production bottlenecks, the metabolic flux was channeled towards the MIA of interest by modulating the copy number of the first two genes of the vindoline biosynthetic p...

Research paper thumbnail of Rôle de la protéine kinase Npr1 dans le contrôle du trafic intracellulaire de la perméase générale des acides aminés Gap1 de la levure Saccharomyces cerevisiae

Cette thèse de doctorat a été numérisée par l'Université libre de Bruxelles. L'auteur qui s'oppos... more Cette thèse de doctorat a été numérisée par l'Université libre de Bruxelles. L'auteur qui s'opposerait à sa mise en ligne dans DI-fusion est invité à prendre contact avec l'Université

Research paper thumbnail of Assigning mitochondrial localization of dual localized proteins using a yeast Bi-Genomic Mitochondrial-Split-GFP

eLife, 2020

A single nuclear gene can be translated into a dual localized protein that distributes between th... more A single nuclear gene can be translated into a dual localized protein that distributes between the cytosol and mitochondria. Accumulating evidences show that mitoproteomes contain lots of these dual localized proteins termed echoforms. Unraveling the existence of mitochondrial echoforms using current GFP (Green Fluorescent Protein) fusion microscopy approaches is extremely difficult because the GFP signal of the cytosolic echoform will almost inevitably mask that of the mitochondrial echoform. We therefore engineered a yeast strain expressing a new type of Split-GFP that we termed Bi-Genomic Mitochondrial-Split-GFP (BiG Mito-Split-GFP). Because one moiety of the GFP is translated from the mitochondrial machinery while the other is fused to the nuclear-encoded protein of interest translated in the cytosol, the self-reassembly of this Bi-Genomic-encoded Split-GFP is confined to mitochondria. We could authenticate the mitochondrial importability of any protein or echoform from yeast, b...

Research paper thumbnail of Ranking genome-wide correlation measurements improves microarray and RNA-seq based global and targeted co-expression networks

Scientific reports, Jan 18, 2018

Co-expression networks are essential tools to infer biological associations between gene products... more Co-expression networks are essential tools to infer biological associations between gene products and predict gene annotation. Global networks can be analyzed at the transcriptome-wide scale or after querying them with a set of guide genes to capture the transcriptional landscape of a given pathway in a process named Pathway Level Coexpression (PLC). A critical step in network construction remains the definition of gene co-expression. In the present work, we compared how Pearson Correlation Coefficient (PCC), Spearman Correlation Coefficient (SCC), their respective ranked values (Highest Reciprocal Rank (HRR)), Mutual Information (MI) and Partial Correlations (PC) performed on global networks and PLCs. This evaluation was conducted on the model plant Arabidopsis thaliana using microarray and differently pre-processed RNA-seq datasets. We particularly evaluated how dataset × distance measurement combinations performed in 5 PLCs corresponding to 4 well described plant metabolic pathwa...

Research paper thumbnail of Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways

International Journal of Molecular Sciences, 2017

Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between t... more Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between the different compartments of eukaryotic cells. They act by recruiting and/or activating effector proteins and thus are involved in regulating various cellular functions, such as vesicular budding, membrane fusion and cytoskeleton dynamics. Although detected in small concentrations in membranes, their role is essential to cell function, since imbalance in their concentrations is a hallmark of many cancers. Their synthesis involves phosphorylating/dephosphorylating positions D3, D4 and/or D5 of their inositol ring by specific lipid kinases and phosphatases. This process is tightly regulated and specific to the different intracellular membranes. Most enzymes involved in phosphoinositide synthesis are conserved between yeast and human, and their loss of function leads to severe diseases (cancer, myopathy, neuropathy and ciliopathy).

Research paper thumbnail of A mutation in VPS15 (PIK3R4) causes a ciliopathy and affects IFT20 release from the cis-Golgi

Nature Communications, 2016

Ciliopathies are a group of diseases that affect kidney and retina among other organs. Here, we i... more Ciliopathies are a group of diseases that affect kidney and retina among other organs. Here, we identify a missense mutation in PIK3R4 (phosphoinositide 3-kinase regulatory subunit 4, named VPS15) in a family with a ciliopathy phenotype. Besides being required for trafficking and autophagy, we show that VPS15 regulates primary cilium length in human fibroblasts, as well as ciliary processes in zebrafish. Furthermore, we demonstrate its interaction with the golgin GM130 and its localization to the Golgi. The VPS15-R998Q patient mutation impairs Golgi trafficking functions in humanized yeast cells. Moreover, in VPS15-R998Q patient fibroblasts, the intraflagellar transport protein IFT20 is not localized to vesicles trafficking to the cilium but is restricted to the Golgi. Our findings suggest that at the Golgi, VPS15 and GM130 form a protein complex devoid of VPS34 to ensure the IFT20-dependent sorting and transport of membrane proteins from the cis-Golgi to the primary cilium.

Research paper thumbnail of Myotubularin MTM1 Involved in Centronuclear Myopathy and its Roles in Human and Yeast Cells

Journal of Molecular and Genetic Medicine, 2015

Mutations in the MTM1 gene, encoding the phosphoinositide phosphatase myotubularin, are responsib... more Mutations in the MTM1 gene, encoding the phosphoinositide phosphatase myotubularin, are responsible for the X-linked centronuclear myopathy (XLCNM) or X-linked myotubular myopathy (XLMTM). The MTM1 gene was first identified in 1996 and its function as a PtdIns3P and PtdIns(,5)P2 phosphatase was discovered in 2000. In recent years, very important progress has been made to set up good models to study MTM1 and the XLCNM disease such as knockout or knockin mice, the Labrador Retriever dog, the zebrafish and the yeast Saccharomyces cerevisiae. These helped to better understand the cellular function of MTM1 and of its four conserved domains: PH-GRAM (Pleckstrin Homology-Glucosyltransferase, Rab-like GTPase Activator and Myotubularin), RID (Rac1-Induced recruitment Domain), PTP/DSP (Protein Tyrosine Phosphatase/Dual-Specificity Phosphatase) and SID (SET-protein Interaction Domain). This review presents the cellular function of human myotubularin MTM1 and its yeast homolog yeast protein Ymr1, and the role of MTM1 in the centronuclear myopathy (CNM) disease.

Research paper thumbnail of Membrane Trafficking in the Yeast Saccharomyces cerevisiae Model

International Journal of Molecular Sciences, 2015

The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secret... more The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM), or the external medium, via the exocytosis or secretory pathway (SEC), and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway). Plasma membrane proteins can be internalized by endocytosis (END) and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway). Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.

Research paper thumbnail of Lsb1 Is a Negative Regulator of Las17 Dependent Actin Polymerization Involved in Endocytosis

PLoS ONE, 2013

The spatial and temporal regulation of actin polymerization is crucial for various cellular proce... more The spatial and temporal regulation of actin polymerization is crucial for various cellular processes. Members of the Wiskott-Aldrich syndrome protein (WASP) family activate the Arp2/3-complex leading to actin polymerization. The yeast Saccharomyces cerevisiae contains only one WASP homolog, Las17, that requires additional factors for its regulation. Lsb1 and Lsb2/Pin3 are two yeast homologous proteins bearing an SH3 domain that were identified as Las17-binding proteins. Lsb2/Pin3 that promotes prion induction was suggested to link this prion formation to the actin cytoskeleton. However, the cellular role of Lsb1 and the molecular function of both Lsb1 and Lsb2 remain unknown. In this study, we show that Lsb1 and/or Lsb2 full-length proteins inhibit Las17-mediated actin polymerization in vitro, Lsb2 being a less potent inhibitor of Las17 activity compared to Lsb1. Addition of Lsb1 or Lsb2 to the corresponding full-length Lsb1/2 further inhibits Las17 activity. Lsb1 and Lsb2 form homo-and hetero-oligomeric complexes suggesting that these two proteins could regulate Las17 activity via dimerization or cooperative binding. In vivo, overexpressed Lsb1 and Lsb2 proteins cluster Las17-CFP in few cytoplasmic punctate structures that are also positive for other Arp2/3-dependent actin polymerization effectors like Sla1 or Abp1. But, only Lsb1 overexpression blocks the internalization step of receptor-mediated endocytosis. This shows a specific function of Lsb1 in endocytosis.

Research paper thumbnail of Study of the Plant COPII Vesicle Coat Subunits by Functional Complementation of Yeast Saccharomyces cerevisiae Mutants

PLoS ONE, 2014

The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat ... more The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble a-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor) Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were coimmunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.

Research paper thumbnail of Btn3 regulates the endosomal sorting function of the yeast Ent3 epsin, an adaptor for SNARE proteins

Journal of cell science, Jan 15, 2015

Ent3 and Ent5 are yeast epsin N-terminal homology (ENTH) domain-containing proteins involved in p... more Ent3 and Ent5 are yeast epsin N-terminal homology (ENTH) domain-containing proteins involved in protein trafficking between the Golgi and late endosomes. They interact with clathrin, clathrin adaptors at the Golgi (AP-1 and GGA) and different SNAREs (Vti1, Snc1, Pep12 and Syn8) required for vesicular transport at the Golgi and endosomes. To better understand the role of these epsins in membrane trafficking, we performed a protein-protein interaction screen. We identified Btn3 (also known as Tda3), a putative oxidoreductase, as a new partner of both Ent3 and Ent5. Btn3 is a negative regulator of the Batten-disease-linked protein Btn2 involved in the retrieval of specific SNAREs (Vti1, Snc1, Tlg1 and Tlg2) from the late endosome to the Golgi. We show that Btn3 endosomal localization depends on the epsins Ent3 and Ent5. We demonstrated that in btn3Δ mutant cells, endosomal sorting of ubiquitylated cargos and endosomal recycling of the Snc1 SNARE are delayed. We thus propose that Btn3 r...

Research paper thumbnail of Additional file 5

Research paper thumbnail of Enhanced bioproduction of anticancer precursor vindoline by yeast cell factories

Research paper thumbnail of Amino Acid Signaling in <i>Saccharomyces cerevisiae</i>: a Permease-Like Sensor of External Amino Acids and F-Box Protein Grr1p Are Required for Transcriptional Induction of the <i>AGP1</i> Gene, Which Encodes a Broad-Specificity Amino Acid Permease

Molecular and Cellular Biology, Feb 1, 1999

HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific re... more HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires

Research paper thumbnail of Exploiting Spermidine <i>N</i>-Hydroxycinnamoyltransferase Diversity and Substrate Promiscuity to Produce Various Trihydroxycinnamoyl Spermidines and Analogues in Engineered Yeast

ACS Synthetic Biology, Jan 15, 2021

Trihydroxycinnamoyl spermidines (THCSpd) are plant specialized metabolites with promising pharmac... more Trihydroxycinnamoyl spermidines (THCSpd) are plant specialized metabolites with promising pharmacological activities as antifungals, antibacterial, antiviral, and antidepressant drugs. However, their characterization and potential pharmaceutical exploitation are greatly impaired by the sourcing of these compounds, restricted to the pollen of core Eudicot plant species. In this work, we developed a precursor-directed biosynthesis of THCSpd in yeast using a dual enzymatic system based on 4-coumarate-CoA ligases (4CL) and spermidine N-hydroxycinnamoyltransferases (SHT). The system relies on the yeast endogenous spermidine pool and only requires hydroxycinnamic acids as exogenous precursors. By exploring 4CL isoforms and SHT diversity among plants, we have driven the production of 8 natural THCSpd, using single or mixed hydroxycinnamic acid precursors. Substrate promiscuities of 4CL and SHT were genuinely exploited to produce 8 new-to-nature THCSpd from exotic hydroxycinnamic and dihydrohydroxycinnamic acids, together with 3 new-to-nature THCSpd containing halogenated hydroxycinnamoyl moieties. In this work, we established a versatile and modular biotechnological production platform allowing the tailor-made THCSpd synthesis, constituting pioneer metabolic engineering for access to these valuable natural products.

Research paper thumbnail of Yeast as a simple eukaryotic model to study human diseases linked to membrane trafficking

Research paper thumbnail of Bi-Genomic Mitochondrial-Split-GFP – the yeast system for screening the mitochondrial matrix echoforms of dually localized proteins

Biochimica et Biophysica Acta (BBA) - Bioenergetics

Research paper thumbnail of Exploiting Spermidine NHydroxycinnamoyltransferase Diversity and Substrate Promiscuity to Produce Various Trihydroxycinnamoyl Spermidines and Analogues in Engineered Yeast

Trihydroxycinnamoyl spermidines (THCSpd) are plant specialized metabolites with promising pharmac... more Trihydroxycinnamoyl spermidines (THCSpd) are plant specialized metabolites with promising pharmacological activities as antifungals, antibacterial, antiviral, and antidepressant drugs. However, their characterization and potential pharmaceutical exploitation are greatly impaired by the sourcing of these compounds, restricted to the pollen of core Eudicot plant species. In this work, we developed a precursor-directed biosynthesis of THCSpd in yeast using a dual enzymatic system based on 4-coumarate-CoA ligases (4CL) and spermidine N-hydroxycinnamoyltransferases (SHT). The system relies on the yeast endogenous spermidine pool and only requires hydroxycinnamic acids as exogenous precursors. By exploring 4CL isoforms and SHT diversity among plants, we have driven the production of 8 natural THCSpd, using single or mixed hydroxycinnamic acid precursors. Substrate promiscuities of 4CL and SHT were genuinely exploited to produce 8 new-to-nature THCSpd from exotic hydroxycinnamic and dihydrohydroxycinnamic acids, together with 3 new-to-nature THCSpd containing halogenated hydroxycinnamoyl moieties. In this work, we established a versatile and modular biotechnological production platform allowing the tailor-made THCSpd synthesis, constituting pioneer metabolic engineering for access to these valuable natural products.

Research paper thumbnail of Content Alerts

This article cites 79 articles, 27 of which can be accessed free

Research paper thumbnail of Cex1 is a component of the COPI intracellular trafficking machinery

Biology Open, 2021

COPI (coatomer complex I) coated vesicles are involved in Golgi-to-ER and intra-Golgi trafficking... more COPI (coatomer complex I) coated vesicles are involved in Golgi-to-ER and intra-Golgi trafficking pathways, and mediate retrieval of ER resident proteins. Functions and components of the COPI-mediated trafficking pathways, beyond the canonical set of Sec/Arf proteins, are constantly increasing in number and complexity. In mammalian cells, GORAB, SCYL1 and SCYL3 proteins regulate Golgi morphology and protein glycosylation in concert with the COPI machinery. Here, we show that Cex1, homologous to the mammalian SCYL proteins, is a component of the yeast COPI machinery, by interacting with Sec27, Sec28 and Sec33 (Ret1/Cop1) proteins of the COPI coat. Cex1 was initially reported to mediate channeling of aminoacylated tRNA outside of the nucleus. Our data show that Cex1 localizes at membrane compartments, on structures positive for the Sec33 α-COP subunit. Moreover, the Wbp1 protein required for N-glycosylation and interacting via its di-lysine motif with the Sec27 β′-COP subunit is mis-t...

Research paper thumbnail of Optimization of Tabersonine Methoxylation to Increase Vindoline Precursor Synthesis in Yeast Cell Factories

Plant specialized metabolites are widely used in the pharmaceutical industry, including the monot... more Plant specialized metabolites are widely used in the pharmaceutical industry, including the monoterpene indole alkaloids (MIAs) vinblastine and vincristine, which both display anticancer activity. Both compounds can be obtained through the chemical condensation of their precursors vindoline and catharanthine extracted from leaves of the Madagascar periwinkle. However, the extensive use of these molecules in chemotherapy increases precursor demand and results in recurrent shortages, explaining why the development of alternative production approaches, such microbial cell factories, is mandatory. In this context, the precursor-directed biosynthesis of vindoline from tabersonine in yeast-expressing heterologous biosynthetic genes is of particular interest but has not reached high production scales to date. To circumvent production bottlenecks, the metabolic flux was channeled towards the MIA of interest by modulating the copy number of the first two genes of the vindoline biosynthetic p...

Research paper thumbnail of Rôle de la protéine kinase Npr1 dans le contrôle du trafic intracellulaire de la perméase générale des acides aminés Gap1 de la levure Saccharomyces cerevisiae

Cette thèse de doctorat a été numérisée par l'Université libre de Bruxelles. L'auteur qui s'oppos... more Cette thèse de doctorat a été numérisée par l'Université libre de Bruxelles. L'auteur qui s'opposerait à sa mise en ligne dans DI-fusion est invité à prendre contact avec l'Université

Research paper thumbnail of Assigning mitochondrial localization of dual localized proteins using a yeast Bi-Genomic Mitochondrial-Split-GFP

eLife, 2020

A single nuclear gene can be translated into a dual localized protein that distributes between th... more A single nuclear gene can be translated into a dual localized protein that distributes between the cytosol and mitochondria. Accumulating evidences show that mitoproteomes contain lots of these dual localized proteins termed echoforms. Unraveling the existence of mitochondrial echoforms using current GFP (Green Fluorescent Protein) fusion microscopy approaches is extremely difficult because the GFP signal of the cytosolic echoform will almost inevitably mask that of the mitochondrial echoform. We therefore engineered a yeast strain expressing a new type of Split-GFP that we termed Bi-Genomic Mitochondrial-Split-GFP (BiG Mito-Split-GFP). Because one moiety of the GFP is translated from the mitochondrial machinery while the other is fused to the nuclear-encoded protein of interest translated in the cytosol, the self-reassembly of this Bi-Genomic-encoded Split-GFP is confined to mitochondria. We could authenticate the mitochondrial importability of any protein or echoform from yeast, b...

Research paper thumbnail of Ranking genome-wide correlation measurements improves microarray and RNA-seq based global and targeted co-expression networks

Scientific reports, Jan 18, 2018

Co-expression networks are essential tools to infer biological associations between gene products... more Co-expression networks are essential tools to infer biological associations between gene products and predict gene annotation. Global networks can be analyzed at the transcriptome-wide scale or after querying them with a set of guide genes to capture the transcriptional landscape of a given pathway in a process named Pathway Level Coexpression (PLC). A critical step in network construction remains the definition of gene co-expression. In the present work, we compared how Pearson Correlation Coefficient (PCC), Spearman Correlation Coefficient (SCC), their respective ranked values (Highest Reciprocal Rank (HRR)), Mutual Information (MI) and Partial Correlations (PC) performed on global networks and PLCs. This evaluation was conducted on the model plant Arabidopsis thaliana using microarray and differently pre-processed RNA-seq datasets. We particularly evaluated how dataset × distance measurement combinations performed in 5 PLCs corresponding to 4 well described plant metabolic pathwa...

Research paper thumbnail of Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways

International Journal of Molecular Sciences, 2017

Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between t... more Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between the different compartments of eukaryotic cells. They act by recruiting and/or activating effector proteins and thus are involved in regulating various cellular functions, such as vesicular budding, membrane fusion and cytoskeleton dynamics. Although detected in small concentrations in membranes, their role is essential to cell function, since imbalance in their concentrations is a hallmark of many cancers. Their synthesis involves phosphorylating/dephosphorylating positions D3, D4 and/or D5 of their inositol ring by specific lipid kinases and phosphatases. This process is tightly regulated and specific to the different intracellular membranes. Most enzymes involved in phosphoinositide synthesis are conserved between yeast and human, and their loss of function leads to severe diseases (cancer, myopathy, neuropathy and ciliopathy).

Research paper thumbnail of A mutation in VPS15 (PIK3R4) causes a ciliopathy and affects IFT20 release from the cis-Golgi

Nature Communications, 2016

Ciliopathies are a group of diseases that affect kidney and retina among other organs. Here, we i... more Ciliopathies are a group of diseases that affect kidney and retina among other organs. Here, we identify a missense mutation in PIK3R4 (phosphoinositide 3-kinase regulatory subunit 4, named VPS15) in a family with a ciliopathy phenotype. Besides being required for trafficking and autophagy, we show that VPS15 regulates primary cilium length in human fibroblasts, as well as ciliary processes in zebrafish. Furthermore, we demonstrate its interaction with the golgin GM130 and its localization to the Golgi. The VPS15-R998Q patient mutation impairs Golgi trafficking functions in humanized yeast cells. Moreover, in VPS15-R998Q patient fibroblasts, the intraflagellar transport protein IFT20 is not localized to vesicles trafficking to the cilium but is restricted to the Golgi. Our findings suggest that at the Golgi, VPS15 and GM130 form a protein complex devoid of VPS34 to ensure the IFT20-dependent sorting and transport of membrane proteins from the cis-Golgi to the primary cilium.

Research paper thumbnail of Myotubularin MTM1 Involved in Centronuclear Myopathy and its Roles in Human and Yeast Cells

Journal of Molecular and Genetic Medicine, 2015

Mutations in the MTM1 gene, encoding the phosphoinositide phosphatase myotubularin, are responsib... more Mutations in the MTM1 gene, encoding the phosphoinositide phosphatase myotubularin, are responsible for the X-linked centronuclear myopathy (XLCNM) or X-linked myotubular myopathy (XLMTM). The MTM1 gene was first identified in 1996 and its function as a PtdIns3P and PtdIns(,5)P2 phosphatase was discovered in 2000. In recent years, very important progress has been made to set up good models to study MTM1 and the XLCNM disease such as knockout or knockin mice, the Labrador Retriever dog, the zebrafish and the yeast Saccharomyces cerevisiae. These helped to better understand the cellular function of MTM1 and of its four conserved domains: PH-GRAM (Pleckstrin Homology-Glucosyltransferase, Rab-like GTPase Activator and Myotubularin), RID (Rac1-Induced recruitment Domain), PTP/DSP (Protein Tyrosine Phosphatase/Dual-Specificity Phosphatase) and SID (SET-protein Interaction Domain). This review presents the cellular function of human myotubularin MTM1 and its yeast homolog yeast protein Ymr1, and the role of MTM1 in the centronuclear myopathy (CNM) disease.

Research paper thumbnail of Membrane Trafficking in the Yeast Saccharomyces cerevisiae Model

International Journal of Molecular Sciences, 2015

The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secret... more The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM), or the external medium, via the exocytosis or secretory pathway (SEC), and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway). Plasma membrane proteins can be internalized by endocytosis (END) and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway). Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.

Research paper thumbnail of Lsb1 Is a Negative Regulator of Las17 Dependent Actin Polymerization Involved in Endocytosis

PLoS ONE, 2013

The spatial and temporal regulation of actin polymerization is crucial for various cellular proce... more The spatial and temporal regulation of actin polymerization is crucial for various cellular processes. Members of the Wiskott-Aldrich syndrome protein (WASP) family activate the Arp2/3-complex leading to actin polymerization. The yeast Saccharomyces cerevisiae contains only one WASP homolog, Las17, that requires additional factors for its regulation. Lsb1 and Lsb2/Pin3 are two yeast homologous proteins bearing an SH3 domain that were identified as Las17-binding proteins. Lsb2/Pin3 that promotes prion induction was suggested to link this prion formation to the actin cytoskeleton. However, the cellular role of Lsb1 and the molecular function of both Lsb1 and Lsb2 remain unknown. In this study, we show that Lsb1 and/or Lsb2 full-length proteins inhibit Las17-mediated actin polymerization in vitro, Lsb2 being a less potent inhibitor of Las17 activity compared to Lsb1. Addition of Lsb1 or Lsb2 to the corresponding full-length Lsb1/2 further inhibits Las17 activity. Lsb1 and Lsb2 form homo-and hetero-oligomeric complexes suggesting that these two proteins could regulate Las17 activity via dimerization or cooperative binding. In vivo, overexpressed Lsb1 and Lsb2 proteins cluster Las17-CFP in few cytoplasmic punctate structures that are also positive for other Arp2/3-dependent actin polymerization effectors like Sla1 or Abp1. But, only Lsb1 overexpression blocks the internalization step of receptor-mediated endocytosis. This shows a specific function of Lsb1 in endocytosis.

Research paper thumbnail of Study of the Plant COPII Vesicle Coat Subunits by Functional Complementation of Yeast Saccharomyces cerevisiae Mutants

PLoS ONE, 2014

The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat ... more The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble a-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor) Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were coimmunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.

Research paper thumbnail of Btn3 regulates the endosomal sorting function of the yeast Ent3 epsin, an adaptor for SNARE proteins

Journal of cell science, Jan 15, 2015

Ent3 and Ent5 are yeast epsin N-terminal homology (ENTH) domain-containing proteins involved in p... more Ent3 and Ent5 are yeast epsin N-terminal homology (ENTH) domain-containing proteins involved in protein trafficking between the Golgi and late endosomes. They interact with clathrin, clathrin adaptors at the Golgi (AP-1 and GGA) and different SNAREs (Vti1, Snc1, Pep12 and Syn8) required for vesicular transport at the Golgi and endosomes. To better understand the role of these epsins in membrane trafficking, we performed a protein-protein interaction screen. We identified Btn3 (also known as Tda3), a putative oxidoreductase, as a new partner of both Ent3 and Ent5. Btn3 is a negative regulator of the Batten-disease-linked protein Btn2 involved in the retrieval of specific SNAREs (Vti1, Snc1, Tlg1 and Tlg2) from the late endosome to the Golgi. We show that Btn3 endosomal localization depends on the epsins Ent3 and Ent5. We demonstrated that in btn3Δ mutant cells, endosomal sorting of ubiquitylated cargos and endosomal recycling of the Snc1 SNARE are delayed. We thus propose that Btn3 r...

Research paper thumbnail of Additional file 5

Research paper thumbnail of Enhanced bioproduction of anticancer precursor vindoline by yeast cell factories