Harald Granser | University of Vienna (original) (raw)
Papers by Harald Granser
59th EAGE Conference & Exhibition, 1997
63rd EAGE Conference & Exhibition, 2001
The Carpathians and Their Foreland<subtitle>Geology and Hydrocarbon Resources</subtitle>
Research of the lithosphere of the Western Carpathians, based on the analysis and interpretation ... more Research of the lithosphere of the Western Carpathians, based on the analysis and interpretation of the complex geological and geophysical data, has brought several remarkable results that enable us to understand more precisely the development of the sedimentary basins. First, a tight relationship between gravity anomalies and sources originated from Tertiary sedimentary basins that creates substantial parts of the gravity effect. The main part of the gravity effects originating from both the Moho discontinuity and the boundary between lithosphere and asthenosphere is mutually compensated for in the region of the Carpathians, and therefore, it can be traced only with difficulties. In this chapter, basic information regarding the study of the gravity field of the Western Carpathians are presented, and these both describe the most significant anomalies and the features of the gravity field of basins and support the significance of gravity in the process of verification of interpretation of seismic, magnetotelluric, and geological models in the area of contact of the Inner and Outer Carpathians and the models of the lithosphere. The fundamental results of deep seismic sounding in the Carpathian–Pannonian region constitute the next part of the presented data, especially the observation of the Moho reflection by deep seismic reflection surveys (in 1955), the deepening of the crustmantle boundary under the surrounding mountain range inferred from international refraction and wide-angle reflection surveys (1964–1975), the detection of seismic reflection arrivals of several kilometers originating from the upper mantle and in quantifying the depth of the lithosphereasthenosphere boundary by determining the velocity-vs.-depth function of the P waves (1975–1981), the determination of a domal uplift of the lithosphereasthenosphere boundary, and the existence of shear zone systems cutting through a significant part of the lithosphere (1990–2000). The seismicity of the Carpathian Basin is summarized based on a comprehensive earthquake catalog with more than 20,000 events. The recurrence curve of earthquakes predicts an earthquake of magnitude M 5 every 1 yr, an earthquake of magnitude M 6 every 10 yr, and an earthquake of magnitude M 7 every 100 yr in the Carpathian Basin on average. Most of the shallow-depth events originate from the 5–15-km (3–10-mi) depth domain, whereas in the Vrancea region, roughly three groups can be outlined with depth centers of about 15, 80, and 130 km (10, 50, and 80 mi), respectively. The average yearly energy release is 6.1 1013 J in the whole basin, and the contribution of the Vrancea zone to this amount is 4.8 1013 J/yr, whereas 1.3 1013 J/yr is the product of the remaining large part of the studied area. The synthetic seismograms for the International Geotraverse II of the Eastern Carpathian lithosphere structure were calculated. Geology, seismic, heat, gravity, and electromagnetic data were considered. Vertical and horizontal variations of velocity, density, and energy dissipation were approximated by means of the finite-element method. Synthetic seismograms were compared with experimental ones registered by West Ukrainian Uszhorod, Kosiv, and Miszhirja seismic stations. Effects of change of the lithosphere structure characteristics in the Eastern Carpathian cross section were interpreted on the seismic patterns of waves spreading through the explored cross section. The most important part of the chapter compiles the data on the distribution of the electrical conductivity anomalies, which have been determined by magnetotellurics in the Earth's crust and upper mantle in the Carpathian–Pannonian Basin. Among them, the Carpathian conductivity anomalies, the Transdanubian upper crustal conductor, the middle to lower crustal conducting layer, and the updoming asthenosphere are discussed in detail. The interpreted resistivity model along the reflection profile 2T, which crossed the whole part of Western Carpathians in 1987–1988, has brought several surprising results that, in combination with reflection seismic, gravity, and other geophysical data, enable us to construct a more precise model of the Western Carpathian lithosphere. The complex set of basic information supplies heat flow, recent vertical movement, and paleomagnetic data. A new heat-flow map is presented for the Pannonian Basin, the Carpathians, and the surrounding region. A brief review summarizes the geodynamic and geothermal background of heat-flow pattern. The investigation on recent vertical crustal movements in the Carpathian region offers very important information. As a first presentation, a new color map of vertical movements is enclosed, with 1-mm/yr isoline interval (see below section on The Recent Vertical Movements in the Carpathian Region). In the investigation, repeated precise geodetic measurements and oceanographic data have been used. The characteristic data of the movement tendencies, including the…
First Break, 2011
Christa Hammerl, Wolfgang Lenhardt, Roman Leonhardt and Harald Granser describe the remarkable ca... more Christa Hammerl, Wolfgang Lenhardt, Roman Leonhardt and Harald Granser describe the remarkable career of Victor Conrad and the naming of Austria’s latest geophysical observatory as a tribute to his achievements principally in the fields of climatology and seismology.
Mit 7 Abbildungen und 2 Tabellen Zusammenfassung Im Bereich des Neusiedlersees kommt den Untergru... more Mit 7 Abbildungen und 2 Tabellen Zusammenfassung Im Bereich des Neusiedlersees kommt den Untergrundstrukturen besondere Bedeutung zu, da eventuell vorhandene subaquatische Quellen durch die Existenz von Bruchsystemen im Untergrund begünstigt werden. Ausgehend von dem bereits vorhandenen Datenmate-rial der gravimetrischen Landesaufnahme wurde eine gezielte Meßpunktverdichtung durchgeführt. Die hieraus erstellte Bouguerschwerkarte wurde mit potentialtheoretischen Methoden interpretiert. Insbesondere gestattet die Analyse der Horizontalgradienten Rückschlüsse auf tektoni-sche Bruchstrukturen. Diese zeigt, daß der Neusiedler Bruch im nordwestlichen Schilfgür-tel des Sees und somit deutlich weiter westlich verläuft als bisher angenommen wurde. Als weitere markante Bruchstruktur ist der Mönchshofer Bruch im Gradientenbild erkennbar, der südöstlich von Podersdorf besonders kräftig in Erscheinung tritt. Beide Brüche strei-chen etwa parallel in SW-NE Richtung. Weiters wird mit Hilfe einer it...
Mit 7 Abbildungen und 2 Tabellen Zusammenfassung Im Bereich des Neusiedlersees kommt den Untergru... more Mit 7 Abbildungen und 2 Tabellen Zusammenfassung Im Bereich des Neusiedlersees kommt den Untergrundstrukturen besondere Bedeutung zu, da eventuell vorhandene subaquatische Quellen durch die Existenz von Bruchsystemen im Untergrund begünstigt werden. Ausgehend von dem bereits vorhandenen Datenmate-rial der gravimetrischen Landesaufnahme wurde eine gezielte Meßpunktverdichtung durchgeführt. Die hieraus erstellte Bouguerschwerkarte wurde mit potentialtheoretischen Methoden interpretiert. Insbesondere gestattet die Analyse der Horizontalgradienten Rückschlüsse auf tektoni-sche Bruchstrukturen. Diese zeigt, daß der Neusiedler Bruch im nordwestlichen Schilfgür-tel des Sees und somit deutlich weiter westlich verläuft als bisher angenommen wurde. Als weitere markante Bruchstruktur ist der Mönchshofer Bruch im Gradientenbild erkennbar, der südöstlich von Podersdorf besonders kräftig in Erscheinung tritt. Beide Brüche strei-chen etwa parallel in SW-NE Richtung. Weiters wird mit Hilfe einer it...
Archives for Meteorology, Geophysics, and Bioclimatology Series A, 1984
The approach described in this paper allows the numerical calculation of the gravity of two-and t... more The approach described in this paper allows the numerical calculation of the gravity of two-and three-dimensional bodies, provided their boundaries can be expressed by two single valued functions. Boundary integral theorems are used to convert the integrals for the gravity components into a form which can be integrated numerically. To perform numerical integration routines based on the Gaut~ quadrature method are applied.
GEOPHYSICS, 1987
The nonlinear inversion of the gravity from a single density interface can be performed through a... more The nonlinear inversion of the gravity from a single density interface can be performed through a power series expansion. The method is based on the Schmidt‐Lichtenstein approach for solving nonlinear integral equations. After expanding the nonlinear integral ...
Geophysical Prospecting, 1987
GRANSER, H. 1987, Topographic Reduction of Gravity Measurements by Numerical Integration of Bound... more GRANSER, H. 1987, Topographic Reduction of Gravity Measurements by Numerical Integration of Boundary Integrals, Geophysical Prospecting 35,71-82.
Geophysical Prospecting, 1983
Geophysical Prospecting, 1987
GRANSER, H. 1987, Three-Dimensional Interpretation of Gravity Data from Sedimentary Basins using ... more GRANSER, H. 1987, Three-Dimensional Interpretation of Gravity Data from Sedimentary Basins using an Exponential Density-Depth Function, Geophysical Prospecting 35, 1030-1041.
Abu Dhabi International Petroleum Exhibition and Conference, 2015
59th EAGE Conference & Exhibition, 1997
63rd EAGE Conference & Exhibition, 2001
The Carpathians and Their Foreland<subtitle>Geology and Hydrocarbon Resources</subtitle>
Research of the lithosphere of the Western Carpathians, based on the analysis and interpretation ... more Research of the lithosphere of the Western Carpathians, based on the analysis and interpretation of the complex geological and geophysical data, has brought several remarkable results that enable us to understand more precisely the development of the sedimentary basins. First, a tight relationship between gravity anomalies and sources originated from Tertiary sedimentary basins that creates substantial parts of the gravity effect. The main part of the gravity effects originating from both the Moho discontinuity and the boundary between lithosphere and asthenosphere is mutually compensated for in the region of the Carpathians, and therefore, it can be traced only with difficulties. In this chapter, basic information regarding the study of the gravity field of the Western Carpathians are presented, and these both describe the most significant anomalies and the features of the gravity field of basins and support the significance of gravity in the process of verification of interpretation of seismic, magnetotelluric, and geological models in the area of contact of the Inner and Outer Carpathians and the models of the lithosphere. The fundamental results of deep seismic sounding in the Carpathian–Pannonian region constitute the next part of the presented data, especially the observation of the Moho reflection by deep seismic reflection surveys (in 1955), the deepening of the crustmantle boundary under the surrounding mountain range inferred from international refraction and wide-angle reflection surveys (1964–1975), the detection of seismic reflection arrivals of several kilometers originating from the upper mantle and in quantifying the depth of the lithosphereasthenosphere boundary by determining the velocity-vs.-depth function of the P waves (1975–1981), the determination of a domal uplift of the lithosphereasthenosphere boundary, and the existence of shear zone systems cutting through a significant part of the lithosphere (1990–2000). The seismicity of the Carpathian Basin is summarized based on a comprehensive earthquake catalog with more than 20,000 events. The recurrence curve of earthquakes predicts an earthquake of magnitude M 5 every 1 yr, an earthquake of magnitude M 6 every 10 yr, and an earthquake of magnitude M 7 every 100 yr in the Carpathian Basin on average. Most of the shallow-depth events originate from the 5–15-km (3–10-mi) depth domain, whereas in the Vrancea region, roughly three groups can be outlined with depth centers of about 15, 80, and 130 km (10, 50, and 80 mi), respectively. The average yearly energy release is 6.1 1013 J in the whole basin, and the contribution of the Vrancea zone to this amount is 4.8 1013 J/yr, whereas 1.3 1013 J/yr is the product of the remaining large part of the studied area. The synthetic seismograms for the International Geotraverse II of the Eastern Carpathian lithosphere structure were calculated. Geology, seismic, heat, gravity, and electromagnetic data were considered. Vertical and horizontal variations of velocity, density, and energy dissipation were approximated by means of the finite-element method. Synthetic seismograms were compared with experimental ones registered by West Ukrainian Uszhorod, Kosiv, and Miszhirja seismic stations. Effects of change of the lithosphere structure characteristics in the Eastern Carpathian cross section were interpreted on the seismic patterns of waves spreading through the explored cross section. The most important part of the chapter compiles the data on the distribution of the electrical conductivity anomalies, which have been determined by magnetotellurics in the Earth's crust and upper mantle in the Carpathian–Pannonian Basin. Among them, the Carpathian conductivity anomalies, the Transdanubian upper crustal conductor, the middle to lower crustal conducting layer, and the updoming asthenosphere are discussed in detail. The interpreted resistivity model along the reflection profile 2T, which crossed the whole part of Western Carpathians in 1987–1988, has brought several surprising results that, in combination with reflection seismic, gravity, and other geophysical data, enable us to construct a more precise model of the Western Carpathian lithosphere. The complex set of basic information supplies heat flow, recent vertical movement, and paleomagnetic data. A new heat-flow map is presented for the Pannonian Basin, the Carpathians, and the surrounding region. A brief review summarizes the geodynamic and geothermal background of heat-flow pattern. The investigation on recent vertical crustal movements in the Carpathian region offers very important information. As a first presentation, a new color map of vertical movements is enclosed, with 1-mm/yr isoline interval (see below section on The Recent Vertical Movements in the Carpathian Region). In the investigation, repeated precise geodetic measurements and oceanographic data have been used. The characteristic data of the movement tendencies, including the…
First Break, 2011
Christa Hammerl, Wolfgang Lenhardt, Roman Leonhardt and Harald Granser describe the remarkable ca... more Christa Hammerl, Wolfgang Lenhardt, Roman Leonhardt and Harald Granser describe the remarkable career of Victor Conrad and the naming of Austria’s latest geophysical observatory as a tribute to his achievements principally in the fields of climatology and seismology.
Mit 7 Abbildungen und 2 Tabellen Zusammenfassung Im Bereich des Neusiedlersees kommt den Untergru... more Mit 7 Abbildungen und 2 Tabellen Zusammenfassung Im Bereich des Neusiedlersees kommt den Untergrundstrukturen besondere Bedeutung zu, da eventuell vorhandene subaquatische Quellen durch die Existenz von Bruchsystemen im Untergrund begünstigt werden. Ausgehend von dem bereits vorhandenen Datenmate-rial der gravimetrischen Landesaufnahme wurde eine gezielte Meßpunktverdichtung durchgeführt. Die hieraus erstellte Bouguerschwerkarte wurde mit potentialtheoretischen Methoden interpretiert. Insbesondere gestattet die Analyse der Horizontalgradienten Rückschlüsse auf tektoni-sche Bruchstrukturen. Diese zeigt, daß der Neusiedler Bruch im nordwestlichen Schilfgür-tel des Sees und somit deutlich weiter westlich verläuft als bisher angenommen wurde. Als weitere markante Bruchstruktur ist der Mönchshofer Bruch im Gradientenbild erkennbar, der südöstlich von Podersdorf besonders kräftig in Erscheinung tritt. Beide Brüche strei-chen etwa parallel in SW-NE Richtung. Weiters wird mit Hilfe einer it...
Mit 7 Abbildungen und 2 Tabellen Zusammenfassung Im Bereich des Neusiedlersees kommt den Untergru... more Mit 7 Abbildungen und 2 Tabellen Zusammenfassung Im Bereich des Neusiedlersees kommt den Untergrundstrukturen besondere Bedeutung zu, da eventuell vorhandene subaquatische Quellen durch die Existenz von Bruchsystemen im Untergrund begünstigt werden. Ausgehend von dem bereits vorhandenen Datenmate-rial der gravimetrischen Landesaufnahme wurde eine gezielte Meßpunktverdichtung durchgeführt. Die hieraus erstellte Bouguerschwerkarte wurde mit potentialtheoretischen Methoden interpretiert. Insbesondere gestattet die Analyse der Horizontalgradienten Rückschlüsse auf tektoni-sche Bruchstrukturen. Diese zeigt, daß der Neusiedler Bruch im nordwestlichen Schilfgür-tel des Sees und somit deutlich weiter westlich verläuft als bisher angenommen wurde. Als weitere markante Bruchstruktur ist der Mönchshofer Bruch im Gradientenbild erkennbar, der südöstlich von Podersdorf besonders kräftig in Erscheinung tritt. Beide Brüche strei-chen etwa parallel in SW-NE Richtung. Weiters wird mit Hilfe einer it...
Archives for Meteorology, Geophysics, and Bioclimatology Series A, 1984
The approach described in this paper allows the numerical calculation of the gravity of two-and t... more The approach described in this paper allows the numerical calculation of the gravity of two-and three-dimensional bodies, provided their boundaries can be expressed by two single valued functions. Boundary integral theorems are used to convert the integrals for the gravity components into a form which can be integrated numerically. To perform numerical integration routines based on the Gaut~ quadrature method are applied.
GEOPHYSICS, 1987
The nonlinear inversion of the gravity from a single density interface can be performed through a... more The nonlinear inversion of the gravity from a single density interface can be performed through a power series expansion. The method is based on the Schmidt‐Lichtenstein approach for solving nonlinear integral equations. After expanding the nonlinear integral ...
Geophysical Prospecting, 1987
GRANSER, H. 1987, Topographic Reduction of Gravity Measurements by Numerical Integration of Bound... more GRANSER, H. 1987, Topographic Reduction of Gravity Measurements by Numerical Integration of Boundary Integrals, Geophysical Prospecting 35,71-82.
Geophysical Prospecting, 1983
Geophysical Prospecting, 1987
GRANSER, H. 1987, Three-Dimensional Interpretation of Gravity Data from Sedimentary Basins using ... more GRANSER, H. 1987, Three-Dimensional Interpretation of Gravity Data from Sedimentary Basins using an Exponential Density-Depth Function, Geophysical Prospecting 35, 1030-1041.
Abu Dhabi International Petroleum Exhibition and Conference, 2015