Harald Niklfeld | University of Vienna (original) (raw)
Papers by Harald Niklfeld
New floristic records from Austria (236–304)<br> New for Austria as a whole are local intro... more New floristic records from Austria (236–304)<br> New for Austria as a whole are local introductions or escapes of Astragalus galegiformis in Burgenland,<br> Erodium manescavii in Burgenland and Vienna, Festuca rubra subsp. litoralis in Lower<br> Austria, as well as Galanthus woronowii in Lower Austria and Vienna. Three native species are new<br> to one Federal State: Arenaria multicaulis to Carinthia, Hieracium transylvanicum to Burgenland,<br> and Orobanche lycoctoni to Vorarlberg. Among adventitious occurrences, 23 taxa are new to one<br> up to three Federal States: for Burgenland, Ammi visnaga, Nassella tenuissima, Sporobolus vaginiflorus,<br> Torilis nodosa and Tulipa sylvestris; for Lower Austria, Erigeron sumatrensis, Nassella<br> tenuissima, Polycarpon tetraphyllum, Polypogon monspeliensis, Schoenoplectus mucronatus and<br> Torilis nodosa; for Vorarlberg, Cerastium tenoreanum, Juncus ensifolius und Lobelia siphilitica;<...
Flora, 2000
Hydrobiologia, 2004
Daphnia often occur in species complexes that consist of two or more co-occurring species and the... more Daphnia often occur in species complexes that consist of two or more co-occurring species and their hybrids. Hybrid individuals are often capable of sexual reproduction and so backcrossing with introgression occurs. To better understand hybridization and backcrossing frequency, we sought to develop PCRbased, species-specific markers in the Daphnia galeata-hyalina species complex using amplified fragment length polymorphism (AFLP). This technique produces large numbers of reproducible markers for assessing diversity across the nuclear genome and provides several advantages over mtDNA and microsatellite approaches. We examined 28 clones of D. galeata, D. hyalina, and their hybrids isolated from Lake Constance on the Swiss-German border. Using a single AFLP primer combination we found five potential species-specific markers, defined as bands that occurred in >80% of one parental species and <20% of the other. Two bands appeared to be co-dominant and were present (homozygous) in D. galeata, absent in D. hyalina, and heterozygous in the hybrid. We conclude AFLP could provide enough PCR-based, speciesspecific markers to identify species, hybrids, and backcrosses from even small amounts of tissue (i.e. resting eggs).
Data Mining for Global Trends in Mountain Biodiversity, 2009
(i) Floristic data of vascular high-mountain plants from the Alps and the Carpathians, with occur... more (i) Floristic data of vascular high-mountain plants from the Alps and the Carpathians, with occurrences of each species with a regular grid system (ii) Species-specific AFLP data (1/0 matrices) separately for samples from Alps and Carpathians, collected along the same grid system as the floristic dat
The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biod... more The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, i.e. ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesized to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies
Molecular Ecology, 2003
Ranunculus glacialis ssp. glacialis is an arctic-alpine plant growing in central and southern Eur... more Ranunculus glacialis ssp. glacialis is an arctic-alpine plant growing in central and southern European and Scandinavian mountain ranges and the European Arctic. In order to elucidate the taxon's migration history, we applied amplified fragment length polymorphism (AFLP) to populations from the Pyrenees, Tatra mountains and Northern Europe and included data from a previous study on Alpine accessions. Populations from the Alps and the Tatra mountains were genetically highly divergent and harboured many private AFLP fragments, indicating old vicariance. Whereas nearly all Alpine populations of R. glacialis were genetically highly variable, the Tatrean population showed only little variation. Our data suggest that the Pyrenees were colonized more recently than the separation of the Tatra from the Alps. Populations in Northern Europe, by contrast, were similar to those of the Eastern Alps but showed only little genetic variation. They harboured no private AFLP fragments and only a subset of East Alpine ones, and they exhibited no phylogeographical structure. It is very likely therefore that R. glacialis colonized Northern Europe in postglacial times from source populations in the Eastern Alps.
Electronic supplement to Billensteiner A. & Niklfeld H. (2021): Biogeographical classification of... more Electronic supplement to Billensteiner A. & Niklfeld H. (2021): Biogeographical classification of Austria based on hierarchical cluster analysis of vascular plant distributions. – Neilreichia <strong>12</strong>: 199–218. https://doi.org/10.5281/zenodo.5818991
Applying hierarchical cluster analysis on data from the project "Floristic Mapping of Austri... more Applying hierarchical cluster analysis on data from the project "Floristic Mapping of Austria", a biogeographical classification of Austria is established. Various clustering methods and similarity indices are tested for their suitability, and their performance is assessed via stability tests. The best results are achieved by the Ward method in combination with Euclidean distance. For validation, the obtained results are compared with existing natural landscape classification schemes. The results are congruent, and the level of concordance to the natural landscape classification is satisfying. It is shown that hierarchical cluster analysis based only on plant distribution data is suitable for a biogeographical classification of Austria.
Neu für Österreich sind drei Neophyten: ein Fleck von <em>Symphytum bulbosum</em> im ... more Neu für Österreich sind drei Neophyten: ein Fleck von <em>Symphytum bulbosum</em> im Burgenland, ein unbeständiges Vorkommen von <em>Euphorbia chamaesyce</em> in Niederösterreich und ein lokal invasives Auftreten von <em>Akebia quinata</em> in Kärnten. Neu für das Burgenland sind <em>Aposeris foetida</em>, <em>Potamogeton gramineus</em> und <em>Potamogeton nodosus</em> (einheimisch), <em>Panicum riparium</em> (der Status wird diskutiert) sowie <em>Aegilops cylindrica</em>, <em>Calepina irregularis</em> (diese Art auch für Niederösterreich), <em>Lonicera japonica</em> und <em>Elodea canadensis</em> (neophytisch). Neu für die Steiermark ist <em>Ranunculus fluitans</em>. Neu für Kärnten ist ein neophytischer <em>Scirpus</em> aus Nordamerika. Neu für Salzburg sind <em>Botrychium lanceolatum, Orobanche bartlingii</em> und ...
Neu für Österreich sind fünf Neophyten: ein historischer Herbarbeleg (von 1829) von <em>Hie... more Neu für Österreich sind fünf Neophyten: ein historischer Herbarbeleg (von 1829) von <em>Hieracium peleterianum</em> im niederösterreichischen Donautal, <em>Xanthium albinum</em> subsp. <em>albinum</em> im Burgenland und in Wien, unbeständige Vorkommen von <em>Sporobolus indicus</em> in Wien und von zwei Zierpflanzen, <em>Linum grandiflorum</em> in Wien und <em>Perovskia ×serotina</em> in Niederösterreich. Wenige einheimische Taxa sind für ein Bundesland neu: <em>Epipactis voethii</em> für Wien, <em>Orobanche alsatica</em> subsp. <em>libanotidis</em> (= <em>O. bartlingii</em>) für Oberösterreich, <em>Ranunculus penicillatus</em> für Kärnten. Ein isoliertes Vorkommen von <em>Daphne striata</em> ist neu für die Steiermark und rätselhafter Herkunft. Höher ist die Anzahl für ein oder zwei Bundesländer neuer Adentiver: für das Burgenland <em>...
Contact: Thorsten Englisch Harald Niklfeld thorsten.englisch@univie.ac.at harald.niklfeld@univie.... more Contact: Thorsten Englisch Harald Niklfeld thorsten.englisch@univie.ac.at harald.niklfeld@univie.ac.at Institute of Botany, University of Vienna Rennweg 14, 1030 Vienna, Austria Austria encompasses a great variety of different landscapes composed by geo-ecological (i. e. geologic, pedologic, climatic, biogeographic) environment as its "natural background" and patterns of anthropogenic influences with different types and highly varying intensities of land-use. Biological diversity exhibits dependencies on both natural and anthropogenic components of landscape and reacts in different ways to modification and transformation of land cover. Thus, a main goal in biodiversity research is to identify determinants of biodiversity patterns and proximate sources of change, and to derive indicative species as indicators of pressure, state, and response in order to assess effects of human actions on biodiversity. In search for a set of biodiversity indicators in a spatial context we re...
Perspectives in Plant Ecology, Evolution and Systematics, 2008
The importance of the conservation of all three fundamental levels of biodiversity (ecosystems, s... more The importance of the conservation of all three fundamental levels of biodiversity (ecosystems, species and genes) has been widely acknowledged, but only in recent years it has become technically feasible to consider intraspecific diversity, i.e. the genetic component to biodiversity. In order to facilitate the assessment of biodiversity, considerable efforts have been made towards identifying surrogates because the efficient evaluation of regional biodiversity would help in designating important areas for nature conservation at larger spatial scales. However, we know little about the fundamental relationships among the three levels of biodiversity, which impedes the formulation of a general, widely applicable concept of biodiversity conservation through surrogates. Here, we present the setup of an international, interdisciplinary project, INTRABIODIV (http://www.intrabiodiv.eu), which studied vascular plant biodiversity at a large scale, i.e. across the European Alps and the Carpathians. Our assessment comprises species richness (high-mountain flora), genetic variation (amplified fragment length polymorphisms, AFLPs) and environmental diversity (modelled potential habitat diversity). Our primary aims were to test for correlations between intra-and interspecific diversity and to identify possible environmental surrogates to describe biodiversity in the two study regions. To the best of our knowledge, INTRABIODIV represents the first multispecies study on intraspecific, molecular-genetic variation in relation with species and habitat diversity. Here, we outline the theoretical background, our sampling scheme, the technical approaches and the feasibility of a concentrated and standardized sampling effort. We further show exemplary results.
Global Ecology and Biogeography, 2011
Aim To evaluate the effect of post-glacial migration lags on the current distribution of Alpine ... more Aim To evaluate the effect of post-glacial migration lags on the current distribution of Alpine plants and the factors responsible for possible range-filling differences among species. Location Austrian Alps. Methods We used species distribution models to predict environmentally suitable sites for 183 Alpine plants at a fine spatial resolution (100 × 100 m2). We overlaid these predictions with independent mapping data (3′× 5′) and calculated the extent to which species fill their potential ranges at this coarser grain based on several different approaches. Moreover, we correlated range-filling estimates with the magnitude of improvement of distribution models when using the distance to putative glacial refugia as an additional independent variable. Finally, we compared species-specific range-filling estimates with traits related to dispersal capacity and competitive ability of these species as well as with characteristics of their habitats. Results Even under a conservative approach, incomplete range filling appears common, with 46% and 31% of the species studied occurring in less than 75% and 50% of their predicted suitable ranges, respectively. Proximity to glacial refugia generally accounts for a lower percentage of the deviance in species distribution data (0–20%, mean 4%) than environmental variables (9–57%, mean 27%). However, its importance correlates closely and negatively with the calculated range-filling estimates. Range filling significantly increases with the dispersal capacity of a species' propagules and the breadth of its altitudinal niche. Calcicolous species have lower range filling than silicicolous plants and substrate generalists. Conclusions Our results suggest that the current ranges of many Alpine plants are still shaped by delayed Holocene recolonization of suitable sites. Hence, long-term migration lags also affect plant distribution in mountainous areas, at least on regional scales. These findings question whether high mountain floras will be able to track the expected rapid, climate change driven shifts in habitat.
Journal of Biogeography, 2010
APPENDIX S2. List of alpine plant species included in the floristic data. Nomenclature follows a ... more APPENDIX S2. List of alpine plant species included in the floristic data. Nomenclature follows a list of high-mountain plant taxa of the European Alps and the Carpathians (IntraBioDiv consortium, unpubl. data). Divergent nomenclature in Flora alpina (Aeschimann et al., 2004) is indicated. High-mountain taxon list Flora alpina (when deviating) Achillea erba-rotta All. s.str. Achillea erba-rotta ssp. erba-rotta Achillea haussknechtiana Ascherson Achillea erba-rotta ssp. ambigua Achillea moschata Wulf. Achillea erba-rotta ssp. moschata Achillea nana L. Adenostyles leucophylla (Willd.) Rchb. Agrostis agrostiflora (Beck) Rauschert Agrostis schraderiana Agrostis rupestris Scop. Ajuga pyramidalis L. Alchemilla alpina agg. Alchemilla alpina (s.lat.) Alnus alnobetula (Ehrh.) C. Koch Alnus viridis Alopecurus gerardii Vill. Alopecurus alpinus Androsace adfinis Jord. & Fourr. Androsace alpina (L.) Lam. Androsace brevis (Hegetschw.) Ces. Androsace obtusifolia All. Androsace puberula Jord. & Fourr. Androsace adfinis ssp. puberula Androsace vandellii (Turra) Chiov. Androsace vitaliana (L.) Lapeyr. Androsace wulfeniana (Sieber ex Koch) Rchb. F. Anthemis carpatica Waldst. & Kit. ex Willd. Anthoxanthum alpinum Á. & D. Löve Arabidopsis pedemontana Boiss. Cardaminopsis pedemontana Arabis allionii DC. Arabis soyeri Reut. & Huet subsp. subcoriacea (Gren.) Breistr. Arabis subcoriacea Arenaria biflora L. Arenaria marschlinsii Koch Armeria alpina Willd. Arnica montana L. Artemisia eriantha Ten. Artemisia mutellina Vill. Artemisia umbelliformis Astragalus penduliflorus Lam. Atocion rupestre (L.) B. Oxelm. Silene rupestris Avenula versicolor (Vill.) Laínz Helictotrichon versicolor Bupleurum stellatum L. Calamagrostis villosa (Chaix) J. F. Gmel. Campanula alpina Jacq. Campanula barbata L. Campanula excisa Schleich. ex Murith Cardamine alpina Willd. Cardamine asarifolia L. Cardamine plumieri Vill. Cardamine resedifolia L. Carex bigelowii subsp. rigida Torr. ex Schwein. Carex brunnescens (Pers.) Poir. Carex curvula All. Carex foetida All. Carex glacialis Mackenzie (new; not listed) Carex lachenalii Schkuhr Carex norvegica Retz. Carex paupercula Michx. Cerastium alpinum L. s.str. Cerastium alpinum Cerastium cerastoides (L.) Britton Cerastium fontanum Baumg. s.str. Cerastium fontanum ssp. fontanum Cerastium lineare All. Cerastium pedunculatum Gaudin Chaerophyllum elegans Koch Chamaecytisus pumilus (De Not.) Pignatti ex Kerguélen Chamaecytisus hirsutus ssp. pumilus Cirsium waldsteinii Rouy Cochlearia excelsa J. Zahlbr. Cochlearia pyrenaica ssp. excelsa Coincya richeri (Vill.) Greuter & Burdet Colchicum alpinum DC. Crepis conyzifolia (Gouan) Kern. Cryptogramma crispa (L.) R. Br. ex Hook. Dasiphora fruticosa (L.) Rydb. Potentilla fruticosa Dianthus lereschii ined. Dianthus furcatus ssp. lereschii Dianthus neglectus Loisel. Dianthus pavonius Diphasiastrum alpinum (L.) Holub Diphasiastrum × oellgaardii Stoor & al. Diphasiastrum × oellgaardii Doronicum cataractarum Widd. Doronicum clusii (All.) Tausch s.str. Doronicum clusii ssp. clusii Doronicum stiriacum (Vill.) DT. Doronicum clusii ssp. villosum Empetrum nigrum agg. Empetrum nigrum (s.lat.) Epilobium anagallidifolium Lam. Epilobium nutans F. W. Schmidt Eriophorum scheuchzeri Hoppe Euphrasia alpina Lam. Euphrasia christii Favrat Euphrasia hirtella Jord. ex Reut. Euphrasia minima Jacq. ex DC. s.str. Euphrasia minima Festuca acuminata Gaudin Festuca halleri All. s.str. Festuca halleri Festuca intercedens (Hack.) Lüdi Festuca paniculata (L.) Schinz & Thell. Festuca picturata Pils Festuca pseudodura Steud. Festuca scabriculmis (Hack.) K. Richt. Festuca supina s.lat. Schur Festuca scabriculmis Festuca varia Haenke s.str. Festuca varia Gagea fistulosa Ker Gawl. Gagea fragifera Galium tendae Rchb. fil. Galium trifidum L. Gentiana acaulis L. Gentiana alpina Vill. Gentiana brachyphylla Vill. Gentiana burseri Lapeyr. subsp. macrophylla Nyman Gentiana villarsii Gentiana frigida Haenke Gentiana punctata L. Gentiana purpurea L. Gentianella lutescens (Velen.) Holub Gentiana lutescens Gentianella ramosa (Hegetschw.
Neu für Österreich sind <em>Hieracium atrocalyx </em>(Niederösterreich), die Hybride ... more Neu für Österreich sind <em>Hieracium atrocalyx </em>(Niederösterreich), die Hybride <em>Primula auricula </em>× <em>P. minima </em>(Kärnten) und <em>Taraxacum pulchellum </em>(Kärnten). Neu für ein Bundesland bzw. die Böhmische Masse sind <em>Allium strictum </em>(Kärnten), <em>Draba stylaris </em>(Vorarlberg), <em>Rhamnus saxatilis </em>(Böhmische Masse), <em>Schoenoplectus mucronatus </em>(Böhmische Masse, Status unklar) und <em>Vicia cassubica </em>(Kärnten). <em>Arnica montana </em>ist neu für die historische Flora Wiens. Bedeutende Wiederfunde für ein Bundesland bzw. einen Naturraum sind <em>Blackstonia acuminata </em>(Vorarlberg), <em>Botrychium multifidum </em>(Nordtirol), <em>Campanula latifolia </em>(Osttirol), <em>Cicuta virosa </em>(Steiermark), <em>Dianthus carthusianorum </em>× <em>D. s...
New floristic records from Austria (236–304)<br> New for Austria as a whole are local intro... more New floristic records from Austria (236–304)<br> New for Austria as a whole are local introductions or escapes of Astragalus galegiformis in Burgenland,<br> Erodium manescavii in Burgenland and Vienna, Festuca rubra subsp. litoralis in Lower<br> Austria, as well as Galanthus woronowii in Lower Austria and Vienna. Three native species are new<br> to one Federal State: Arenaria multicaulis to Carinthia, Hieracium transylvanicum to Burgenland,<br> and Orobanche lycoctoni to Vorarlberg. Among adventitious occurrences, 23 taxa are new to one<br> up to three Federal States: for Burgenland, Ammi visnaga, Nassella tenuissima, Sporobolus vaginiflorus,<br> Torilis nodosa and Tulipa sylvestris; for Lower Austria, Erigeron sumatrensis, Nassella<br> tenuissima, Polycarpon tetraphyllum, Polypogon monspeliensis, Schoenoplectus mucronatus and<br> Torilis nodosa; for Vorarlberg, Cerastium tenoreanum, Juncus ensifolius und Lobelia siphilitica;<...
Flora, 2000
Hydrobiologia, 2004
Daphnia often occur in species complexes that consist of two or more co-occurring species and the... more Daphnia often occur in species complexes that consist of two or more co-occurring species and their hybrids. Hybrid individuals are often capable of sexual reproduction and so backcrossing with introgression occurs. To better understand hybridization and backcrossing frequency, we sought to develop PCRbased, species-specific markers in the Daphnia galeata-hyalina species complex using amplified fragment length polymorphism (AFLP). This technique produces large numbers of reproducible markers for assessing diversity across the nuclear genome and provides several advantages over mtDNA and microsatellite approaches. We examined 28 clones of D. galeata, D. hyalina, and their hybrids isolated from Lake Constance on the Swiss-German border. Using a single AFLP primer combination we found five potential species-specific markers, defined as bands that occurred in >80% of one parental species and <20% of the other. Two bands appeared to be co-dominant and were present (homozygous) in D. galeata, absent in D. hyalina, and heterozygous in the hybrid. We conclude AFLP could provide enough PCR-based, speciesspecific markers to identify species, hybrids, and backcrosses from even small amounts of tissue (i.e. resting eggs).
Data Mining for Global Trends in Mountain Biodiversity, 2009
(i) Floristic data of vascular high-mountain plants from the Alps and the Carpathians, with occur... more (i) Floristic data of vascular high-mountain plants from the Alps and the Carpathians, with occurrences of each species with a regular grid system (ii) Species-specific AFLP data (1/0 matrices) separately for samples from Alps and Carpathians, collected along the same grid system as the floristic dat
The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biod... more The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, i.e. ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesized to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies
Molecular Ecology, 2003
Ranunculus glacialis ssp. glacialis is an arctic-alpine plant growing in central and southern Eur... more Ranunculus glacialis ssp. glacialis is an arctic-alpine plant growing in central and southern European and Scandinavian mountain ranges and the European Arctic. In order to elucidate the taxon's migration history, we applied amplified fragment length polymorphism (AFLP) to populations from the Pyrenees, Tatra mountains and Northern Europe and included data from a previous study on Alpine accessions. Populations from the Alps and the Tatra mountains were genetically highly divergent and harboured many private AFLP fragments, indicating old vicariance. Whereas nearly all Alpine populations of R. glacialis were genetically highly variable, the Tatrean population showed only little variation. Our data suggest that the Pyrenees were colonized more recently than the separation of the Tatra from the Alps. Populations in Northern Europe, by contrast, were similar to those of the Eastern Alps but showed only little genetic variation. They harboured no private AFLP fragments and only a subset of East Alpine ones, and they exhibited no phylogeographical structure. It is very likely therefore that R. glacialis colonized Northern Europe in postglacial times from source populations in the Eastern Alps.
Electronic supplement to Billensteiner A. & Niklfeld H. (2021): Biogeographical classification of... more Electronic supplement to Billensteiner A. & Niklfeld H. (2021): Biogeographical classification of Austria based on hierarchical cluster analysis of vascular plant distributions. – Neilreichia <strong>12</strong>: 199–218. https://doi.org/10.5281/zenodo.5818991
Applying hierarchical cluster analysis on data from the project "Floristic Mapping of Austri... more Applying hierarchical cluster analysis on data from the project "Floristic Mapping of Austria", a biogeographical classification of Austria is established. Various clustering methods and similarity indices are tested for their suitability, and their performance is assessed via stability tests. The best results are achieved by the Ward method in combination with Euclidean distance. For validation, the obtained results are compared with existing natural landscape classification schemes. The results are congruent, and the level of concordance to the natural landscape classification is satisfying. It is shown that hierarchical cluster analysis based only on plant distribution data is suitable for a biogeographical classification of Austria.
Neu für Österreich sind drei Neophyten: ein Fleck von <em>Symphytum bulbosum</em> im ... more Neu für Österreich sind drei Neophyten: ein Fleck von <em>Symphytum bulbosum</em> im Burgenland, ein unbeständiges Vorkommen von <em>Euphorbia chamaesyce</em> in Niederösterreich und ein lokal invasives Auftreten von <em>Akebia quinata</em> in Kärnten. Neu für das Burgenland sind <em>Aposeris foetida</em>, <em>Potamogeton gramineus</em> und <em>Potamogeton nodosus</em> (einheimisch), <em>Panicum riparium</em> (der Status wird diskutiert) sowie <em>Aegilops cylindrica</em>, <em>Calepina irregularis</em> (diese Art auch für Niederösterreich), <em>Lonicera japonica</em> und <em>Elodea canadensis</em> (neophytisch). Neu für die Steiermark ist <em>Ranunculus fluitans</em>. Neu für Kärnten ist ein neophytischer <em>Scirpus</em> aus Nordamerika. Neu für Salzburg sind <em>Botrychium lanceolatum, Orobanche bartlingii</em> und ...
Neu für Österreich sind fünf Neophyten: ein historischer Herbarbeleg (von 1829) von <em>Hie... more Neu für Österreich sind fünf Neophyten: ein historischer Herbarbeleg (von 1829) von <em>Hieracium peleterianum</em> im niederösterreichischen Donautal, <em>Xanthium albinum</em> subsp. <em>albinum</em> im Burgenland und in Wien, unbeständige Vorkommen von <em>Sporobolus indicus</em> in Wien und von zwei Zierpflanzen, <em>Linum grandiflorum</em> in Wien und <em>Perovskia ×serotina</em> in Niederösterreich. Wenige einheimische Taxa sind für ein Bundesland neu: <em>Epipactis voethii</em> für Wien, <em>Orobanche alsatica</em> subsp. <em>libanotidis</em> (= <em>O. bartlingii</em>) für Oberösterreich, <em>Ranunculus penicillatus</em> für Kärnten. Ein isoliertes Vorkommen von <em>Daphne striata</em> ist neu für die Steiermark und rätselhafter Herkunft. Höher ist die Anzahl für ein oder zwei Bundesländer neuer Adentiver: für das Burgenland <em>...
Contact: Thorsten Englisch Harald Niklfeld thorsten.englisch@univie.ac.at harald.niklfeld@univie.... more Contact: Thorsten Englisch Harald Niklfeld thorsten.englisch@univie.ac.at harald.niklfeld@univie.ac.at Institute of Botany, University of Vienna Rennweg 14, 1030 Vienna, Austria Austria encompasses a great variety of different landscapes composed by geo-ecological (i. e. geologic, pedologic, climatic, biogeographic) environment as its "natural background" and patterns of anthropogenic influences with different types and highly varying intensities of land-use. Biological diversity exhibits dependencies on both natural and anthropogenic components of landscape and reacts in different ways to modification and transformation of land cover. Thus, a main goal in biodiversity research is to identify determinants of biodiversity patterns and proximate sources of change, and to derive indicative species as indicators of pressure, state, and response in order to assess effects of human actions on biodiversity. In search for a set of biodiversity indicators in a spatial context we re...
Perspectives in Plant Ecology, Evolution and Systematics, 2008
The importance of the conservation of all three fundamental levels of biodiversity (ecosystems, s... more The importance of the conservation of all three fundamental levels of biodiversity (ecosystems, species and genes) has been widely acknowledged, but only in recent years it has become technically feasible to consider intraspecific diversity, i.e. the genetic component to biodiversity. In order to facilitate the assessment of biodiversity, considerable efforts have been made towards identifying surrogates because the efficient evaluation of regional biodiversity would help in designating important areas for nature conservation at larger spatial scales. However, we know little about the fundamental relationships among the three levels of biodiversity, which impedes the formulation of a general, widely applicable concept of biodiversity conservation through surrogates. Here, we present the setup of an international, interdisciplinary project, INTRABIODIV (http://www.intrabiodiv.eu), which studied vascular plant biodiversity at a large scale, i.e. across the European Alps and the Carpathians. Our assessment comprises species richness (high-mountain flora), genetic variation (amplified fragment length polymorphisms, AFLPs) and environmental diversity (modelled potential habitat diversity). Our primary aims were to test for correlations between intra-and interspecific diversity and to identify possible environmental surrogates to describe biodiversity in the two study regions. To the best of our knowledge, INTRABIODIV represents the first multispecies study on intraspecific, molecular-genetic variation in relation with species and habitat diversity. Here, we outline the theoretical background, our sampling scheme, the technical approaches and the feasibility of a concentrated and standardized sampling effort. We further show exemplary results.
Global Ecology and Biogeography, 2011
Aim To evaluate the effect of post-glacial migration lags on the current distribution of Alpine ... more Aim To evaluate the effect of post-glacial migration lags on the current distribution of Alpine plants and the factors responsible for possible range-filling differences among species. Location Austrian Alps. Methods We used species distribution models to predict environmentally suitable sites for 183 Alpine plants at a fine spatial resolution (100 × 100 m2). We overlaid these predictions with independent mapping data (3′× 5′) and calculated the extent to which species fill their potential ranges at this coarser grain based on several different approaches. Moreover, we correlated range-filling estimates with the magnitude of improvement of distribution models when using the distance to putative glacial refugia as an additional independent variable. Finally, we compared species-specific range-filling estimates with traits related to dispersal capacity and competitive ability of these species as well as with characteristics of their habitats. Results Even under a conservative approach, incomplete range filling appears common, with 46% and 31% of the species studied occurring in less than 75% and 50% of their predicted suitable ranges, respectively. Proximity to glacial refugia generally accounts for a lower percentage of the deviance in species distribution data (0–20%, mean 4%) than environmental variables (9–57%, mean 27%). However, its importance correlates closely and negatively with the calculated range-filling estimates. Range filling significantly increases with the dispersal capacity of a species' propagules and the breadth of its altitudinal niche. Calcicolous species have lower range filling than silicicolous plants and substrate generalists. Conclusions Our results suggest that the current ranges of many Alpine plants are still shaped by delayed Holocene recolonization of suitable sites. Hence, long-term migration lags also affect plant distribution in mountainous areas, at least on regional scales. These findings question whether high mountain floras will be able to track the expected rapid, climate change driven shifts in habitat.
Journal of Biogeography, 2010
APPENDIX S2. List of alpine plant species included in the floristic data. Nomenclature follows a ... more APPENDIX S2. List of alpine plant species included in the floristic data. Nomenclature follows a list of high-mountain plant taxa of the European Alps and the Carpathians (IntraBioDiv consortium, unpubl. data). Divergent nomenclature in Flora alpina (Aeschimann et al., 2004) is indicated. High-mountain taxon list Flora alpina (when deviating) Achillea erba-rotta All. s.str. Achillea erba-rotta ssp. erba-rotta Achillea haussknechtiana Ascherson Achillea erba-rotta ssp. ambigua Achillea moschata Wulf. Achillea erba-rotta ssp. moschata Achillea nana L. Adenostyles leucophylla (Willd.) Rchb. Agrostis agrostiflora (Beck) Rauschert Agrostis schraderiana Agrostis rupestris Scop. Ajuga pyramidalis L. Alchemilla alpina agg. Alchemilla alpina (s.lat.) Alnus alnobetula (Ehrh.) C. Koch Alnus viridis Alopecurus gerardii Vill. Alopecurus alpinus Androsace adfinis Jord. & Fourr. Androsace alpina (L.) Lam. Androsace brevis (Hegetschw.) Ces. Androsace obtusifolia All. Androsace puberula Jord. & Fourr. Androsace adfinis ssp. puberula Androsace vandellii (Turra) Chiov. Androsace vitaliana (L.) Lapeyr. Androsace wulfeniana (Sieber ex Koch) Rchb. F. Anthemis carpatica Waldst. & Kit. ex Willd. Anthoxanthum alpinum Á. & D. Löve Arabidopsis pedemontana Boiss. Cardaminopsis pedemontana Arabis allionii DC. Arabis soyeri Reut. & Huet subsp. subcoriacea (Gren.) Breistr. Arabis subcoriacea Arenaria biflora L. Arenaria marschlinsii Koch Armeria alpina Willd. Arnica montana L. Artemisia eriantha Ten. Artemisia mutellina Vill. Artemisia umbelliformis Astragalus penduliflorus Lam. Atocion rupestre (L.) B. Oxelm. Silene rupestris Avenula versicolor (Vill.) Laínz Helictotrichon versicolor Bupleurum stellatum L. Calamagrostis villosa (Chaix) J. F. Gmel. Campanula alpina Jacq. Campanula barbata L. Campanula excisa Schleich. ex Murith Cardamine alpina Willd. Cardamine asarifolia L. Cardamine plumieri Vill. Cardamine resedifolia L. Carex bigelowii subsp. rigida Torr. ex Schwein. Carex brunnescens (Pers.) Poir. Carex curvula All. Carex foetida All. Carex glacialis Mackenzie (new; not listed) Carex lachenalii Schkuhr Carex norvegica Retz. Carex paupercula Michx. Cerastium alpinum L. s.str. Cerastium alpinum Cerastium cerastoides (L.) Britton Cerastium fontanum Baumg. s.str. Cerastium fontanum ssp. fontanum Cerastium lineare All. Cerastium pedunculatum Gaudin Chaerophyllum elegans Koch Chamaecytisus pumilus (De Not.) Pignatti ex Kerguélen Chamaecytisus hirsutus ssp. pumilus Cirsium waldsteinii Rouy Cochlearia excelsa J. Zahlbr. Cochlearia pyrenaica ssp. excelsa Coincya richeri (Vill.) Greuter & Burdet Colchicum alpinum DC. Crepis conyzifolia (Gouan) Kern. Cryptogramma crispa (L.) R. Br. ex Hook. Dasiphora fruticosa (L.) Rydb. Potentilla fruticosa Dianthus lereschii ined. Dianthus furcatus ssp. lereschii Dianthus neglectus Loisel. Dianthus pavonius Diphasiastrum alpinum (L.) Holub Diphasiastrum × oellgaardii Stoor & al. Diphasiastrum × oellgaardii Doronicum cataractarum Widd. Doronicum clusii (All.) Tausch s.str. Doronicum clusii ssp. clusii Doronicum stiriacum (Vill.) DT. Doronicum clusii ssp. villosum Empetrum nigrum agg. Empetrum nigrum (s.lat.) Epilobium anagallidifolium Lam. Epilobium nutans F. W. Schmidt Eriophorum scheuchzeri Hoppe Euphrasia alpina Lam. Euphrasia christii Favrat Euphrasia hirtella Jord. ex Reut. Euphrasia minima Jacq. ex DC. s.str. Euphrasia minima Festuca acuminata Gaudin Festuca halleri All. s.str. Festuca halleri Festuca intercedens (Hack.) Lüdi Festuca paniculata (L.) Schinz & Thell. Festuca picturata Pils Festuca pseudodura Steud. Festuca scabriculmis (Hack.) K. Richt. Festuca supina s.lat. Schur Festuca scabriculmis Festuca varia Haenke s.str. Festuca varia Gagea fistulosa Ker Gawl. Gagea fragifera Galium tendae Rchb. fil. Galium trifidum L. Gentiana acaulis L. Gentiana alpina Vill. Gentiana brachyphylla Vill. Gentiana burseri Lapeyr. subsp. macrophylla Nyman Gentiana villarsii Gentiana frigida Haenke Gentiana punctata L. Gentiana purpurea L. Gentianella lutescens (Velen.) Holub Gentiana lutescens Gentianella ramosa (Hegetschw.
Neu für Österreich sind <em>Hieracium atrocalyx </em>(Niederösterreich), die Hybride ... more Neu für Österreich sind <em>Hieracium atrocalyx </em>(Niederösterreich), die Hybride <em>Primula auricula </em>× <em>P. minima </em>(Kärnten) und <em>Taraxacum pulchellum </em>(Kärnten). Neu für ein Bundesland bzw. die Böhmische Masse sind <em>Allium strictum </em>(Kärnten), <em>Draba stylaris </em>(Vorarlberg), <em>Rhamnus saxatilis </em>(Böhmische Masse), <em>Schoenoplectus mucronatus </em>(Böhmische Masse, Status unklar) und <em>Vicia cassubica </em>(Kärnten). <em>Arnica montana </em>ist neu für die historische Flora Wiens. Bedeutende Wiederfunde für ein Bundesland bzw. einen Naturraum sind <em>Blackstonia acuminata </em>(Vorarlberg), <em>Botrychium multifidum </em>(Nordtirol), <em>Campanula latifolia </em>(Osttirol), <em>Cicuta virosa </em>(Steiermark), <em>Dianthus carthusianorum </em>× <em>D. s...