Mauricio J Lozano | Universidad Nacional de La Plata (original) (raw)

Papers by Mauricio J Lozano

Research paper thumbnail of Identification of Ensifer meliloti genes required for survival during peat-based bioinoculant maturation by STM-seq

Research paper thumbnail of Identification of Ensifer meliloti genes required for survival during peat-based bioinoculant maturation by STM-seq

Rhizobial inoculants are sold either as rhizobia within a liquid matrix; or as rhizobia adhered t... more Rhizobial inoculants are sold either as rhizobia within a liquid matrix; or as rhizobia adhered to granules composed of peat prill or finely ground peat moss. During the production of peat-based inoculants, immediately after mixing the rhizobia culture with partially dry sterile peat, the inoculant is stored for a period of 4-5 weeks, inducing a series of changes that results in an increased capability of the rhizobia to survive in the seeds. The number of viable rhizobia on preinoculated seeds at the point of sale, however, is often a limiting factor, as is the inefficiency of the inoculant bacteria to compete with the local rhizobia for the host colonization. In the present work, we used STM-seq for the genomewide screening of Ensifer meliloti mutants affected in the survival during the maturation of peat-based inoculant formulations. Through this approach, we identified hundreds of genes that proved to be relevant to this process. These results also provide a base knowledge that ...

Research paper thumbnail of ubiF is involved in acid stress tolerance and symbiotic competitiveness in Rhizobium favelukesii LPU83

Brazilian Journal of Microbiology

Research paper thumbnail of Supplemental Material for Mogro, Ambrosis, and Lozano, 2021

<b>Supplementary Tables</b><br><b>Table S1. Genomes used for ISCompare ev... more <b>Supplementary Tables</b><br><b>Table S1. Genomes used for ISCompare evaluation</b><br><b>Table S2. SurroundingLen parameter optimization.</b> Sheet 1, results of the comparison of <i>E. coli </i>K-12 substr. MG1655 with an artificial genome of the same strain containing 100 IS<i>30</i> random insertions. Sheet 2, results of the comparison using <i>E. meliloti</i> strain 1021 as reference genome and an artificial <i>E. meliloti </i>2011 genome with 100 IS<i>Rm5</i> random insertions as query. Sheet 3, Sensitivity and precision analysis. TP, true positives; FP, false positives; FN, false negatives. * indicate values manually found by inspecting the VD reports.<br><b>Table S3. ISCompare evaluation using 3,000 random IS<i>30</i> insertions.</b> Sheet 1: Statistical analysis. Sheet 2: Location of 3,000 randomly inserted IS<i>30</i>. Set 1. Sheet 3: ISCompare results using a compilation of ISs from ISFinder database and the randomly inserted IS<i>30</i> set 1. Sheet 4: Location of 3,000 randomly inserted IS<i>30</i>. Set 2. Sheet 5: ISCompare results using IS<i>30</i> as query IS and the randomly inserted IS<i>30 </i>set 2. TP, true positives; FP, false positives; FN, false negatives. * indicate values manually found by inspecting the VD reports.<br><b>Table S4. Analysis of differentially located ISs on <i>P. aeruginosa </i>strains. </b>Sheet 1: ISCompare result analysis. TP, true positives; FP, false positives; FN, false negatives. * indicate values manually found by inspecting the VD reports. TP-ALL and FP-ALL indicate the total number of TP or FP detected. Sheet 2: ANIb and DDH results.<br><b>Table S5. Analysis of differentially located ISs on<i> E. meliloti </i>strains. </b>Sheet 1: ISCompare results summary. TP, true positives; FP, false positives; FN, false negatives. * indicate values manually found by inspecting the VD reports. TP-ALL and FP-ALL indicate the total number of TP or FP detected. Sheet 2: ANIb calculated using ANI matrix calculator server. Sheet 3: dDDH results from http://ggdc.dsmz.de/ggdc.php. [...]

Research paper thumbnail of Analysis of SARS-CoV-2 synonymous codon usage evolution throughout the COVID-19 pandemic

SARS-CoV-2, the seventh coronavirus known to infect humans, can cause severe life-threatening res... more SARS-CoV-2, the seventh coronavirus known to infect humans, can cause severe life-threatening respiratory pathologies. To better understand SARS-CoV-2 evolution, genome-wide analyses have been made, including the general characterization of its codons usage profile. Here we present a bioinformatic analysis of the evo-lution of SARS-CoV-2 codon usage over time using complete genomes collected since December 2019. Our results show that SARS-CoV-2 codon usage pattern is antagonistic to, and it is getting farther away from that of the human host. Further, a selection of deoptimized codons over time, which was accompanied by a decrease in both the codon adaptation index and the effective number of codons, was observed. All together, these findings suggest that SARS-CoV-2 could be evolving, at least from the perspective of the synonymous codon usage, to become less pathogenic.Graphical Abstract

Research paper thumbnail of The two-component system ActJK is involved in acid stress tolerance and symbiosis in Sinorhizobium meliloti

Journal of Biotechnology, 2021

This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Research paper thumbnail of Easy identification of insertion sequence mobilization events in related bacterial strains with ISCompare

MotivationBacterial genomes are composed by a core and an accessory genome. The first composed of... more MotivationBacterial genomes are composed by a core and an accessory genome. The first composed of housekeeping and essential genes, while the second is composed, in its majority, of mobile genetic elements, including transposable elements (TEs). Insertion sequences (ISs), the smallest TEs, have an important role in genome evolution, and contribute to bacterial genome plasticity and adaptability. ISs can spread in a genome, presenting different locations in nearly related strains, and producing phenotypic variations. Few tools are available which can identify differentially located ISs (DLIS) on assembled genomes.ResultsWe developed ISCompare to profile IS mobilization events in related bacterial strains using complete or draft genome assemblies. ISCompare was validated using artificial genomes with simulated random IS insertions and real sequences, achieving the same or better results than other available tools, with the advantage that ISCompare can analyse multiple ISs at the same ...

Research paper thumbnail of Characterization of extrachromosomal replicons present in the extended host range Rhizobium sp. LPU83

Plasmid, 2010

In several rhizobia, bacteria that inhabit the soil in free-living conditions and associate in sy... more In several rhizobia, bacteria that inhabit the soil in free-living conditions and associate in symbiosis with the root of legumes as nitrogen-fixing organisms, plasmid DNA can constitute a high percentage of the genome. We have characterized acid-tolerant isolates of rhizobia-here represented by the strain Rhizobium sp. LPU83-that have an extended nodulation-host range including alfalfa, the common bean, and Leucena leucocephala. In this study we analyzed the plasmids of R. sp. LPU83 in order to characterize their role in the evolution of Medicago symbionts and their involvement in symbiotic behavior. The pLPU83a plasmid was found to be transmissible with no associated phenotypic traits. The symbiotic plasmid pLPU83b could be transferred at very low frequencies under laboratory conditions only when pLPU83a was present; could restore nodulation to a strain cured of its symbiotic plasmid, S. meliloti A818; but could not restore the full nitrogen fixation associated with alfalfa.

Research paper thumbnail of Identification and Characterization of a nodH Ortholog from the Alfalfa-Nodulating Or191-Like Rhizobia

Molecular Plant-Microbe Interactions®, 2007

Nodulation of Medicago sativa (alfalfa) is known to be restricted to Sinorhizobium meliloti and a... more Nodulation of Medicago sativa (alfalfa) is known to be restricted to Sinorhizobium meliloti and a few other rhizobia that include the poorly characterized isolates related to Rhizobium sp. strain Or191. Distinctive features of the symbiosis between alfalfa and S. meliloti are the marked specificity from the plant to the bacteria and the strict requirement for the presence of sulfated lipochitooligosac-charides (Nod factors [NFs]) at its reducing end. Here, we present evidence of the presence of a functional nodH-encoded NF sulfotransferase in the Or191-like rhizobia. The nodH gene, present in single copy, maps to a high molecular weight megaplasmid. As in S. meliloti, a nodF homolog was identified immediately upstream of nodH that was transcribed in the opposite direction (local synteny). This novel nodH ortholog was cloned and shown to restore both NF sulfation and the Nif+Fix+ phenotypes when introduced into an S. meliloti nodH mutant. Unexpectedly, however, nodH disruption in the...

Research paper thumbnail of Development of new positive-selection RIVET tools: Detection of induced promoters by the excision-based transcriptional activation of an aacCI (GmR)–gfp fusion

Journal of Biotechnology, 2011

RIVET (Recombination Based in vivo Expression Technology) is a powerful genetic tool originally c... more RIVET (Recombination Based in vivo Expression Technology) is a powerful genetic tool originally conceived for the identification of genes induced in complex biological niches where conventional transcriptomics is difficult to use. With a broader application, genetic recombination-based technologies have also been used, in combination with regulatory proteins and specific transcriptional regulators, for the development of highly sensitive biosensor systems. RIVET systems generally comprise two modules: a promoter-trap cassette generating genomic transcriptional fusions to the tnpR gene encoding the Tn-γδ TnpR resolvase, and a reporter cassette carrying res-flanked selection markers that are excised upon expression of tnpR to produce an irreversible, inheritable phenotypic change. We report here the construction and validation of a new set of positive-selection RIVET systems that, upon induction of the promoter-trap module, generate the transcriptional activation of an antibiotic-resistant and a green-fluorescent phenotype. Two classes of promoter-trap tools were constructed to generate transcriptional fusions to tnpR: one based on the use of a narrow-host-range plasmid (pRIVET-I), integrative in several Gram-negative bacteria, and the other based on the use of a broad-host-range plasmid (pRIVET-R). The system was evaluated in the model soil bacterium Sinorhizobium meliloti, where a clear-cut phenotypic transition from Nm(R)-Gm(S)-GFP(-) to Nm(S)-Gm(R)-GFP(+) occurred upon expression of tnpR. A S. meliloti integrative RIVET library was constructed in pRIVET-I and, as expected, changes in the extracellular conditions (e.g., salt stress) triggered a significant increase in the appearance of Gm(R)-GFP(+) (excised) clones. The sacB-independent positive-selection RIVET systems here described provide suitable basic tools both for the construction of new recombination-based biosensors and for the search of bacterial markers induced when microorganisms colonize and invade complex environments and eukaryotic hosts.

Research paper thumbnail of First genomic analysis of the broad-host-range Rhizobium sp. LPU83 strain, a member of the low-genetic diversity Oregon-like Rhizobium sp. group

Journal of Biotechnology, 2011

Alfalfa (Medicago sativa) is the most cultivated forage legume for cattle and animal feeding, occ... more Alfalfa (Medicago sativa) is the most cultivated forage legume for cattle and animal feeding, occupying about 32 million hectares over the world. Management of the N₂-fixing symbiosis of this plant to maximize crop production is therefore an important objective. A fundamental constraint to this aim emerges when a moderately low soil pH hampers the establishment of an effective symbiosis with indigenous and/or inoculated rhizobia. Besides the association of alfalfa with Ensifer (Sinorhizobium) meliloti, this legume is able to establish a symbiosis with Ensifer (Sinorhizobium) medicae and with less characterized types of rhizobia, such as the Oregon-like strains, Rhizobium sp. Or191 initially isolated in the USA, and the Rhizobium sp. LPU83 strain, from Argentina. These strains are acid-tolerant, highly competitive for acidic-soil-alfalfa nodulation, but inefficient for biological nitrogen fixation with alfalfa. These features position the Oregon-like rhizobia as strains of potential risk in agricultural soils compared with the efficient symbiont E. meliloti. Moreover, the collected genetic information has revealed that the genomic structure of these rhizobial isolates is complex in terms of sequence similarities shared with other rhizobia. Such a &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;patched&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot; genetic composition has obviously imposed severe restrictions to the classical taxonomy of these rhizobia. In this work we summarize the accumulated knowledge about the Oregon-like rhizobia and present a phylogenetic analysis based on genome sequence data of Rhizobium sp. LPU83 obtained by a high-throughput sequencing on the Genome Sequencer FLX Titanium platform. The accessibility of the complete genomic sequence will release up more experimental possibilities since this information will then enable biochemical studies as well as proteomics and transcriptomics approaches.

Research paper thumbnail of The Nodulation of Alfalfa by the Acid-Tolerant Rhizobium sp. Strain LPU83 Does Not Require Sulfated Forms of Lipochitooligosaccharide Nodulation Signals

Journal of Bacteriology, 2010

The induction of root nodules by the majority of rhizobia has a strict requirement for the secret... more The induction of root nodules by the majority of rhizobia has a strict requirement for the secretion of symbiosis-specific lipochitooligosaccharides (nodulation factors [NFs]). The nature of the chemical substitution on the NFs depends on the particular rhizobium and contributes to the host specificity imparted by the NFs. We present here a description of the genetic organization of the nod gene cluster and the characterization of the chemical structure of the NFs associated with the broad-host-range Rhizobium sp. strain LPU83, a bacterium capable of nodulating at least alfalfa, bean, and Leucena leucocephala . The nod gene cluster was located on the plasmid pLPU83b. The organization of the cluster showed synteny with those of the alfalfa-nodulating rhizobia, Sinorhizobium meliloti and Sinorhizobium medicae . Interestingly, the strongest sequence similarity observed was between the partial nod sequences of Rhizobium mongolense USDA 1844 and the corresponding LPU83 nod genes sequence...

Research paper thumbnail of rptA, a novel gene fromEnsifer(Sinorhizobium)melilotiinvolved in conjugal transfer

FEMS Microbiology Letters, 2013

We approached the identification of Ensifer (Sinorhizobium) meliloti conjugal functions by random... more We approached the identification of Ensifer (Sinorhizobium) meliloti conjugal functions by random Tn5-B13 mutagenesis of the pSmeLPU88a plasmid of E. meliloti strain LPU88 and the subsequent selection of those mutants that had lost the ability to mobilize the small plasmid pSmeLPU88b. The Tn5-B13insertion site of one of the mutants was cloned as an EcoRI-restricted DNA fragment that after subsequent isolation and sequencing demonstrated that a small open reading frame of 522 bp (designated rptA, for rhizobium plasmid transfer A) had been disrupted. The predicted gene product encoded by the rptA sequence shows a significant similarity to two hypothetical proteins of the plasmid pSmed03 of Ensifer medicae WSM419 and other rhizobia plasmids. No significant similarity was found to any protein sequence of known function registered in the databases. Although the rptA gene was required for pSmeL-PU88b-plasmid mobilization in the strain 2011 background, it was not required in the original strain LPU88 background.

Research paper thumbnail of Cultural conditions required for the induction of an adaptive acid-tolerance response (ATR) in Sinorhizobium meliloti and the question as to whether or not the ATR helps rhizobia improve their symbiosis with alfalfa at low pH

FEMS Microbiology Letters, 2010

Sinorhizobium meliloti associates with Medicago and Melilotus species to develop nitrogen-fixing ... more Sinorhizobium meliloti associates with Medicago and Melilotus species to develop nitrogen-fixing symbioses. The agricultural relevance of these associations, the worldwide distribution of acid soils, and the remarkable acid sensitivity of the microsymbiont have all stimulated research on the responses of the symbionts to acid environments. We show here that an adaptive acid-tolerance response (ATR) can be induced in S. meliloti, as shown previously for Sinorhizobium medicae, when the bacteria are grown in batch cultures at the slightly acid pH of 6.1. In marked contrast, no increased tolerance to hydrogen ions is obtained if rhizobia are grown in a chemostat under continuous cultivation at the same pH. The adaptive ATR appears as a complex process triggered by an increased hydrogen-ion concentration, but operative only if other-as yet unknown-concomitant factors that depend on the culture conditions are present (although not provided under continuous cultivation). Although the stability of the ATR and its influence on acid tolerance has been characterized in rhizobia, no data have been available on the effect of the adapted state on symbiosis. Coinoculation experiments showed that acid-adapted indicator rhizobia (ATR1) were present in 4 90% of the nodules when nodulation was performed at pH 5.6, representing a 4 30% increase in occupancy compared with a control test. We show that the ATR represents a clear advantage in competing for nodulation at low pH. It is not yet clear whether such an effect results from an improved performance in the acid environment during preinfection, an enhanced ability to initiate infections, or both conditions. The practical use of ATR1 rhizobia will depend on validation experiments with soil microcosms and on field testing, as well as on the possibility of preserving the physiology of ATR1 bacteria in inoculant formulations.

Research paper thumbnail of Conjugal properties of the Sinorhizobium meliloti plasmid mobilome

FEMS Microbiology Ecology, 2008

The biology and biochemistry of plasmid transfer in soil bacteria is currently under active inves... more The biology and biochemistry of plasmid transfer in soil bacteria is currently under active investigation because of its central role in prokaryote adaptation and evolution. In this work, we examined the conjugal properties of the cryptic plasmids present in a collection of the N 2-fixing legume-symbiont Sinorhizobium meliloti. The study was performed on 65 S. meliloti isolates recovered from 25 humic soils of Argentina, which were grouped into 22 plasmid-profile types [i.e. plasmid operational taxonomic units (OTUs)]. The cumulative Shannon index calculated for the observed plasmid profiles showed a clear saturation plateau, thus indicating an adequate representation of the S. meliloti plasmid-profile types in the isolates studied. The results show that isolates of nearly 14% of the plasmid OTUs hosted transmissible plasmids and that isolates of 29% of the plasmid OTUs were able to retransfer the previously characterized mobilizable-cryptic plasmid pSmeLPU88b to a third recipient strain. It is noteworthy that isolates belonging to 14% of the plasmid OTUs proved to be refractory to the entrance of the model plasmid pSmeLPU88b, suggesting either the presence of surface exclusion phenomena or the occurrence of restriction incompatibility with the incoming replicon. Incompatibility for replication between resident plasmids and plasmid pSmeLPU88b was observed in c. 20% of the OTUs. The results reported here reveal a widespread compatibility among the conjugal functions of the cryptic plasmids in S. meliloti, and this fact, together with the observed high proportion of existing donor genotypes, points to the extrachromosomal compartment of the species as being an extremely active plasmid mobilome.

Research paper thumbnail of Comparative Analysis of Three Bradyrhizobium diazoefficiens Genomes Show Specific Mutations Acquired during Selection for a Higher Motility Phenotype and Adaption to Laboratory Conditions

Microbiology Spectrum, 2021

The genetic and genomic changes that occur under laboratory conditions in Bradyrhizobium diazoeff... more The genetic and genomic changes that occur under laboratory conditions in Bradyrhizobium diazoefficiens genomes remain poorly studied. Only a few genome sequences of this important nitrogen-fixing species are available, and there are no genome-wide comparative analyses of related strains.

Research paper thumbnail of Genomics of high molecular weight plasmids isolated from an on-farm biopurification system

Research paper thumbnail of Genetic and functional characterization of a yet-unclassified rhizobial Dtr (DNA-transfer-and-replication) region from a ubiquitous plasmid conjugal system present in Sinorhizobium meliloti, in Sinorhizobium medicae, and in other nonrhizobial Gram-negative bacteria

Plasmid, 2012

Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to es... more Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own helper functions. The results present an as-yet-unclassified and seemingly ubiquitous conjugal system that provides a mechanistic support for the HGT between sympatric rhizobia of Medicago roots, and between other soil and rhizospheric bacteria.

Research paper thumbnail of Characterization of extrachromosomal replicons present in the extended host range Rhizobium sp. LPU83

Plasmid, 2010

In several rhizobia, bacteria that inhabit the soil in free-living conditions and associate in sy... more In several rhizobia, bacteria that inhabit the soil in free-living conditions and associate in symbiosis with the root of legumes as nitrogen-fixing organisms, plasmid DNA can constitute a high percentage of the genome. We have characterized acid-tolerant isolates of rhizobia-here represented by the strain Rhizobium sp. LPU83-that have an extended nodulation-host range including alfalfa, the common bean, and Leucena leucocephala. In this study we analyzed the plasmids of R. sp. LPU83 in order to characterize their role in the evolution of Medicago symbionts and their involvement in symbiotic behavior. The pLPU83a plasmid was found to be transmissible with no associated phenotypic traits. The symbiotic plasmid pLPU83b could be transferred at very low frequencies under laboratory conditions only when pLPU83a was present; could restore nodulation to a strain cured of its symbiotic plasmid, S. meliloti A818; but could not restore the full nitrogen fixation associated with alfalfa.

Research paper thumbnail of Identification and Characterization of a nodH Ortholog from the Alfalfa-Nodulating Or191-Like Rhizobia

Molecular Plant-Microbe Interactions, 2007

Nodulation of Medicago sativa (alfalfa) is known to be restricted to Sinorhizobium meliloti and a... more Nodulation of Medicago sativa (alfalfa) is known to be restricted to Sinorhizobium meliloti and a few other rhizobia that include the poorly characterized isolates related to Rhizobium sp. strain Or191. Distinctive features of the symbiosis between alfalfa and S. meliloti are the marked specificity from the plant to the bacteria and the strict requirement for the presence of sulfated lipochitooligosaccharides (Nod factors [NFs]) at its reducing end. Here, we present evidence of the presence of a functional nodH-encoded NF sulfotransferase in the Or191-like rhizobia. The nodH gene, present in single copy, maps to a high molecular weight megaplasmid. As in S. meliloti, a nodF homolog was identified immediately upstream of nodH that was transcribed in the opposite direction (local synteny). This novel nodH ortholog was cloned and shown to restore both NF sulfation and the Nif+Fix+ phenotypes when introduced into an S. meliloti nodH mutant. Unexpectedly, however, nodH disruption in the Or191-like bacteria did not abolish their ability to nodulate alfalfa, resulting instead in a severely delayed nodulation. In agreement with evidence from other authors, the nodH sequence analysis strongly supports the idea that the Or191-like rhizobia most likely represent a genetic mosaic resulting from the horizontal transfer of symbiotic genes from a sinorhizobial megaplasmid to a not yet clearly identified ancestor.

Research paper thumbnail of Identification of Ensifer meliloti genes required for survival during peat-based bioinoculant maturation by STM-seq

Research paper thumbnail of Identification of Ensifer meliloti genes required for survival during peat-based bioinoculant maturation by STM-seq

Rhizobial inoculants are sold either as rhizobia within a liquid matrix; or as rhizobia adhered t... more Rhizobial inoculants are sold either as rhizobia within a liquid matrix; or as rhizobia adhered to granules composed of peat prill or finely ground peat moss. During the production of peat-based inoculants, immediately after mixing the rhizobia culture with partially dry sterile peat, the inoculant is stored for a period of 4-5 weeks, inducing a series of changes that results in an increased capability of the rhizobia to survive in the seeds. The number of viable rhizobia on preinoculated seeds at the point of sale, however, is often a limiting factor, as is the inefficiency of the inoculant bacteria to compete with the local rhizobia for the host colonization. In the present work, we used STM-seq for the genomewide screening of Ensifer meliloti mutants affected in the survival during the maturation of peat-based inoculant formulations. Through this approach, we identified hundreds of genes that proved to be relevant to this process. These results also provide a base knowledge that ...

Research paper thumbnail of ubiF is involved in acid stress tolerance and symbiotic competitiveness in Rhizobium favelukesii LPU83

Brazilian Journal of Microbiology

Research paper thumbnail of Supplemental Material for Mogro, Ambrosis, and Lozano, 2021

<b>Supplementary Tables</b><br><b>Table S1. Genomes used for ISCompare ev... more <b>Supplementary Tables</b><br><b>Table S1. Genomes used for ISCompare evaluation</b><br><b>Table S2. SurroundingLen parameter optimization.</b> Sheet 1, results of the comparison of <i>E. coli </i>K-12 substr. MG1655 with an artificial genome of the same strain containing 100 IS<i>30</i> random insertions. Sheet 2, results of the comparison using <i>E. meliloti</i> strain 1021 as reference genome and an artificial <i>E. meliloti </i>2011 genome with 100 IS<i>Rm5</i> random insertions as query. Sheet 3, Sensitivity and precision analysis. TP, true positives; FP, false positives; FN, false negatives. * indicate values manually found by inspecting the VD reports.<br><b>Table S3. ISCompare evaluation using 3,000 random IS<i>30</i> insertions.</b> Sheet 1: Statistical analysis. Sheet 2: Location of 3,000 randomly inserted IS<i>30</i>. Set 1. Sheet 3: ISCompare results using a compilation of ISs from ISFinder database and the randomly inserted IS<i>30</i> set 1. Sheet 4: Location of 3,000 randomly inserted IS<i>30</i>. Set 2. Sheet 5: ISCompare results using IS<i>30</i> as query IS and the randomly inserted IS<i>30 </i>set 2. TP, true positives; FP, false positives; FN, false negatives. * indicate values manually found by inspecting the VD reports.<br><b>Table S4. Analysis of differentially located ISs on <i>P. aeruginosa </i>strains. </b>Sheet 1: ISCompare result analysis. TP, true positives; FP, false positives; FN, false negatives. * indicate values manually found by inspecting the VD reports. TP-ALL and FP-ALL indicate the total number of TP or FP detected. Sheet 2: ANIb and DDH results.<br><b>Table S5. Analysis of differentially located ISs on<i> E. meliloti </i>strains. </b>Sheet 1: ISCompare results summary. TP, true positives; FP, false positives; FN, false negatives. * indicate values manually found by inspecting the VD reports. TP-ALL and FP-ALL indicate the total number of TP or FP detected. Sheet 2: ANIb calculated using ANI matrix calculator server. Sheet 3: dDDH results from http://ggdc.dsmz.de/ggdc.php. [...]

Research paper thumbnail of Analysis of SARS-CoV-2 synonymous codon usage evolution throughout the COVID-19 pandemic

SARS-CoV-2, the seventh coronavirus known to infect humans, can cause severe life-threatening res... more SARS-CoV-2, the seventh coronavirus known to infect humans, can cause severe life-threatening respiratory pathologies. To better understand SARS-CoV-2 evolution, genome-wide analyses have been made, including the general characterization of its codons usage profile. Here we present a bioinformatic analysis of the evo-lution of SARS-CoV-2 codon usage over time using complete genomes collected since December 2019. Our results show that SARS-CoV-2 codon usage pattern is antagonistic to, and it is getting farther away from that of the human host. Further, a selection of deoptimized codons over time, which was accompanied by a decrease in both the codon adaptation index and the effective number of codons, was observed. All together, these findings suggest that SARS-CoV-2 could be evolving, at least from the perspective of the synonymous codon usage, to become less pathogenic.Graphical Abstract

Research paper thumbnail of The two-component system ActJK is involved in acid stress tolerance and symbiosis in Sinorhizobium meliloti

Journal of Biotechnology, 2021

This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Research paper thumbnail of Easy identification of insertion sequence mobilization events in related bacterial strains with ISCompare

MotivationBacterial genomes are composed by a core and an accessory genome. The first composed of... more MotivationBacterial genomes are composed by a core and an accessory genome. The first composed of housekeeping and essential genes, while the second is composed, in its majority, of mobile genetic elements, including transposable elements (TEs). Insertion sequences (ISs), the smallest TEs, have an important role in genome evolution, and contribute to bacterial genome plasticity and adaptability. ISs can spread in a genome, presenting different locations in nearly related strains, and producing phenotypic variations. Few tools are available which can identify differentially located ISs (DLIS) on assembled genomes.ResultsWe developed ISCompare to profile IS mobilization events in related bacterial strains using complete or draft genome assemblies. ISCompare was validated using artificial genomes with simulated random IS insertions and real sequences, achieving the same or better results than other available tools, with the advantage that ISCompare can analyse multiple ISs at the same ...

Research paper thumbnail of Characterization of extrachromosomal replicons present in the extended host range Rhizobium sp. LPU83

Plasmid, 2010

In several rhizobia, bacteria that inhabit the soil in free-living conditions and associate in sy... more In several rhizobia, bacteria that inhabit the soil in free-living conditions and associate in symbiosis with the root of legumes as nitrogen-fixing organisms, plasmid DNA can constitute a high percentage of the genome. We have characterized acid-tolerant isolates of rhizobia-here represented by the strain Rhizobium sp. LPU83-that have an extended nodulation-host range including alfalfa, the common bean, and Leucena leucocephala. In this study we analyzed the plasmids of R. sp. LPU83 in order to characterize their role in the evolution of Medicago symbionts and their involvement in symbiotic behavior. The pLPU83a plasmid was found to be transmissible with no associated phenotypic traits. The symbiotic plasmid pLPU83b could be transferred at very low frequencies under laboratory conditions only when pLPU83a was present; could restore nodulation to a strain cured of its symbiotic plasmid, S. meliloti A818; but could not restore the full nitrogen fixation associated with alfalfa.

Research paper thumbnail of Identification and Characterization of a nodH Ortholog from the Alfalfa-Nodulating Or191-Like Rhizobia

Molecular Plant-Microbe Interactions®, 2007

Nodulation of Medicago sativa (alfalfa) is known to be restricted to Sinorhizobium meliloti and a... more Nodulation of Medicago sativa (alfalfa) is known to be restricted to Sinorhizobium meliloti and a few other rhizobia that include the poorly characterized isolates related to Rhizobium sp. strain Or191. Distinctive features of the symbiosis between alfalfa and S. meliloti are the marked specificity from the plant to the bacteria and the strict requirement for the presence of sulfated lipochitooligosac-charides (Nod factors [NFs]) at its reducing end. Here, we present evidence of the presence of a functional nodH-encoded NF sulfotransferase in the Or191-like rhizobia. The nodH gene, present in single copy, maps to a high molecular weight megaplasmid. As in S. meliloti, a nodF homolog was identified immediately upstream of nodH that was transcribed in the opposite direction (local synteny). This novel nodH ortholog was cloned and shown to restore both NF sulfation and the Nif+Fix+ phenotypes when introduced into an S. meliloti nodH mutant. Unexpectedly, however, nodH disruption in the...

Research paper thumbnail of Development of new positive-selection RIVET tools: Detection of induced promoters by the excision-based transcriptional activation of an aacCI (GmR)–gfp fusion

Journal of Biotechnology, 2011

RIVET (Recombination Based in vivo Expression Technology) is a powerful genetic tool originally c... more RIVET (Recombination Based in vivo Expression Technology) is a powerful genetic tool originally conceived for the identification of genes induced in complex biological niches where conventional transcriptomics is difficult to use. With a broader application, genetic recombination-based technologies have also been used, in combination with regulatory proteins and specific transcriptional regulators, for the development of highly sensitive biosensor systems. RIVET systems generally comprise two modules: a promoter-trap cassette generating genomic transcriptional fusions to the tnpR gene encoding the Tn-γδ TnpR resolvase, and a reporter cassette carrying res-flanked selection markers that are excised upon expression of tnpR to produce an irreversible, inheritable phenotypic change. We report here the construction and validation of a new set of positive-selection RIVET systems that, upon induction of the promoter-trap module, generate the transcriptional activation of an antibiotic-resistant and a green-fluorescent phenotype. Two classes of promoter-trap tools were constructed to generate transcriptional fusions to tnpR: one based on the use of a narrow-host-range plasmid (pRIVET-I), integrative in several Gram-negative bacteria, and the other based on the use of a broad-host-range plasmid (pRIVET-R). The system was evaluated in the model soil bacterium Sinorhizobium meliloti, where a clear-cut phenotypic transition from Nm(R)-Gm(S)-GFP(-) to Nm(S)-Gm(R)-GFP(+) occurred upon expression of tnpR. A S. meliloti integrative RIVET library was constructed in pRIVET-I and, as expected, changes in the extracellular conditions (e.g., salt stress) triggered a significant increase in the appearance of Gm(R)-GFP(+) (excised) clones. The sacB-independent positive-selection RIVET systems here described provide suitable basic tools both for the construction of new recombination-based biosensors and for the search of bacterial markers induced when microorganisms colonize and invade complex environments and eukaryotic hosts.

Research paper thumbnail of First genomic analysis of the broad-host-range Rhizobium sp. LPU83 strain, a member of the low-genetic diversity Oregon-like Rhizobium sp. group

Journal of Biotechnology, 2011

Alfalfa (Medicago sativa) is the most cultivated forage legume for cattle and animal feeding, occ... more Alfalfa (Medicago sativa) is the most cultivated forage legume for cattle and animal feeding, occupying about 32 million hectares over the world. Management of the N₂-fixing symbiosis of this plant to maximize crop production is therefore an important objective. A fundamental constraint to this aim emerges when a moderately low soil pH hampers the establishment of an effective symbiosis with indigenous and/or inoculated rhizobia. Besides the association of alfalfa with Ensifer (Sinorhizobium) meliloti, this legume is able to establish a symbiosis with Ensifer (Sinorhizobium) medicae and with less characterized types of rhizobia, such as the Oregon-like strains, Rhizobium sp. Or191 initially isolated in the USA, and the Rhizobium sp. LPU83 strain, from Argentina. These strains are acid-tolerant, highly competitive for acidic-soil-alfalfa nodulation, but inefficient for biological nitrogen fixation with alfalfa. These features position the Oregon-like rhizobia as strains of potential risk in agricultural soils compared with the efficient symbiont E. meliloti. Moreover, the collected genetic information has revealed that the genomic structure of these rhizobial isolates is complex in terms of sequence similarities shared with other rhizobia. Such a &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;patched&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot; genetic composition has obviously imposed severe restrictions to the classical taxonomy of these rhizobia. In this work we summarize the accumulated knowledge about the Oregon-like rhizobia and present a phylogenetic analysis based on genome sequence data of Rhizobium sp. LPU83 obtained by a high-throughput sequencing on the Genome Sequencer FLX Titanium platform. The accessibility of the complete genomic sequence will release up more experimental possibilities since this information will then enable biochemical studies as well as proteomics and transcriptomics approaches.

Research paper thumbnail of The Nodulation of Alfalfa by the Acid-Tolerant Rhizobium sp. Strain LPU83 Does Not Require Sulfated Forms of Lipochitooligosaccharide Nodulation Signals

Journal of Bacteriology, 2010

The induction of root nodules by the majority of rhizobia has a strict requirement for the secret... more The induction of root nodules by the majority of rhizobia has a strict requirement for the secretion of symbiosis-specific lipochitooligosaccharides (nodulation factors [NFs]). The nature of the chemical substitution on the NFs depends on the particular rhizobium and contributes to the host specificity imparted by the NFs. We present here a description of the genetic organization of the nod gene cluster and the characterization of the chemical structure of the NFs associated with the broad-host-range Rhizobium sp. strain LPU83, a bacterium capable of nodulating at least alfalfa, bean, and Leucena leucocephala . The nod gene cluster was located on the plasmid pLPU83b. The organization of the cluster showed synteny with those of the alfalfa-nodulating rhizobia, Sinorhizobium meliloti and Sinorhizobium medicae . Interestingly, the strongest sequence similarity observed was between the partial nod sequences of Rhizobium mongolense USDA 1844 and the corresponding LPU83 nod genes sequence...

Research paper thumbnail of rptA, a novel gene fromEnsifer(Sinorhizobium)melilotiinvolved in conjugal transfer

FEMS Microbiology Letters, 2013

We approached the identification of Ensifer (Sinorhizobium) meliloti conjugal functions by random... more We approached the identification of Ensifer (Sinorhizobium) meliloti conjugal functions by random Tn5-B13 mutagenesis of the pSmeLPU88a plasmid of E. meliloti strain LPU88 and the subsequent selection of those mutants that had lost the ability to mobilize the small plasmid pSmeLPU88b. The Tn5-B13insertion site of one of the mutants was cloned as an EcoRI-restricted DNA fragment that after subsequent isolation and sequencing demonstrated that a small open reading frame of 522 bp (designated rptA, for rhizobium plasmid transfer A) had been disrupted. The predicted gene product encoded by the rptA sequence shows a significant similarity to two hypothetical proteins of the plasmid pSmed03 of Ensifer medicae WSM419 and other rhizobia plasmids. No significant similarity was found to any protein sequence of known function registered in the databases. Although the rptA gene was required for pSmeL-PU88b-plasmid mobilization in the strain 2011 background, it was not required in the original strain LPU88 background.

Research paper thumbnail of Cultural conditions required for the induction of an adaptive acid-tolerance response (ATR) in Sinorhizobium meliloti and the question as to whether or not the ATR helps rhizobia improve their symbiosis with alfalfa at low pH

FEMS Microbiology Letters, 2010

Sinorhizobium meliloti associates with Medicago and Melilotus species to develop nitrogen-fixing ... more Sinorhizobium meliloti associates with Medicago and Melilotus species to develop nitrogen-fixing symbioses. The agricultural relevance of these associations, the worldwide distribution of acid soils, and the remarkable acid sensitivity of the microsymbiont have all stimulated research on the responses of the symbionts to acid environments. We show here that an adaptive acid-tolerance response (ATR) can be induced in S. meliloti, as shown previously for Sinorhizobium medicae, when the bacteria are grown in batch cultures at the slightly acid pH of 6.1. In marked contrast, no increased tolerance to hydrogen ions is obtained if rhizobia are grown in a chemostat under continuous cultivation at the same pH. The adaptive ATR appears as a complex process triggered by an increased hydrogen-ion concentration, but operative only if other-as yet unknown-concomitant factors that depend on the culture conditions are present (although not provided under continuous cultivation). Although the stability of the ATR and its influence on acid tolerance has been characterized in rhizobia, no data have been available on the effect of the adapted state on symbiosis. Coinoculation experiments showed that acid-adapted indicator rhizobia (ATR1) were present in 4 90% of the nodules when nodulation was performed at pH 5.6, representing a 4 30% increase in occupancy compared with a control test. We show that the ATR represents a clear advantage in competing for nodulation at low pH. It is not yet clear whether such an effect results from an improved performance in the acid environment during preinfection, an enhanced ability to initiate infections, or both conditions. The practical use of ATR1 rhizobia will depend on validation experiments with soil microcosms and on field testing, as well as on the possibility of preserving the physiology of ATR1 bacteria in inoculant formulations.

Research paper thumbnail of Conjugal properties of the Sinorhizobium meliloti plasmid mobilome

FEMS Microbiology Ecology, 2008

The biology and biochemistry of plasmid transfer in soil bacteria is currently under active inves... more The biology and biochemistry of plasmid transfer in soil bacteria is currently under active investigation because of its central role in prokaryote adaptation and evolution. In this work, we examined the conjugal properties of the cryptic plasmids present in a collection of the N 2-fixing legume-symbiont Sinorhizobium meliloti. The study was performed on 65 S. meliloti isolates recovered from 25 humic soils of Argentina, which were grouped into 22 plasmid-profile types [i.e. plasmid operational taxonomic units (OTUs)]. The cumulative Shannon index calculated for the observed plasmid profiles showed a clear saturation plateau, thus indicating an adequate representation of the S. meliloti plasmid-profile types in the isolates studied. The results show that isolates of nearly 14% of the plasmid OTUs hosted transmissible plasmids and that isolates of 29% of the plasmid OTUs were able to retransfer the previously characterized mobilizable-cryptic plasmid pSmeLPU88b to a third recipient strain. It is noteworthy that isolates belonging to 14% of the plasmid OTUs proved to be refractory to the entrance of the model plasmid pSmeLPU88b, suggesting either the presence of surface exclusion phenomena or the occurrence of restriction incompatibility with the incoming replicon. Incompatibility for replication between resident plasmids and plasmid pSmeLPU88b was observed in c. 20% of the OTUs. The results reported here reveal a widespread compatibility among the conjugal functions of the cryptic plasmids in S. meliloti, and this fact, together with the observed high proportion of existing donor genotypes, points to the extrachromosomal compartment of the species as being an extremely active plasmid mobilome.

Research paper thumbnail of Comparative Analysis of Three Bradyrhizobium diazoefficiens Genomes Show Specific Mutations Acquired during Selection for a Higher Motility Phenotype and Adaption to Laboratory Conditions

Microbiology Spectrum, 2021

The genetic and genomic changes that occur under laboratory conditions in Bradyrhizobium diazoeff... more The genetic and genomic changes that occur under laboratory conditions in Bradyrhizobium diazoefficiens genomes remain poorly studied. Only a few genome sequences of this important nitrogen-fixing species are available, and there are no genome-wide comparative analyses of related strains.

Research paper thumbnail of Genomics of high molecular weight plasmids isolated from an on-farm biopurification system

Research paper thumbnail of Genetic and functional characterization of a yet-unclassified rhizobial Dtr (DNA-transfer-and-replication) region from a ubiquitous plasmid conjugal system present in Sinorhizobium meliloti, in Sinorhizobium medicae, and in other nonrhizobial Gram-negative bacteria

Plasmid, 2012

Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to es... more Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own helper functions. The results present an as-yet-unclassified and seemingly ubiquitous conjugal system that provides a mechanistic support for the HGT between sympatric rhizobia of Medicago roots, and between other soil and rhizospheric bacteria.

Research paper thumbnail of Characterization of extrachromosomal replicons present in the extended host range Rhizobium sp. LPU83

Plasmid, 2010

In several rhizobia, bacteria that inhabit the soil in free-living conditions and associate in sy... more In several rhizobia, bacteria that inhabit the soil in free-living conditions and associate in symbiosis with the root of legumes as nitrogen-fixing organisms, plasmid DNA can constitute a high percentage of the genome. We have characterized acid-tolerant isolates of rhizobia-here represented by the strain Rhizobium sp. LPU83-that have an extended nodulation-host range including alfalfa, the common bean, and Leucena leucocephala. In this study we analyzed the plasmids of R. sp. LPU83 in order to characterize their role in the evolution of Medicago symbionts and their involvement in symbiotic behavior. The pLPU83a plasmid was found to be transmissible with no associated phenotypic traits. The symbiotic plasmid pLPU83b could be transferred at very low frequencies under laboratory conditions only when pLPU83a was present; could restore nodulation to a strain cured of its symbiotic plasmid, S. meliloti A818; but could not restore the full nitrogen fixation associated with alfalfa.

Research paper thumbnail of Identification and Characterization of a nodH Ortholog from the Alfalfa-Nodulating Or191-Like Rhizobia

Molecular Plant-Microbe Interactions, 2007

Nodulation of Medicago sativa (alfalfa) is known to be restricted to Sinorhizobium meliloti and a... more Nodulation of Medicago sativa (alfalfa) is known to be restricted to Sinorhizobium meliloti and a few other rhizobia that include the poorly characterized isolates related to Rhizobium sp. strain Or191. Distinctive features of the symbiosis between alfalfa and S. meliloti are the marked specificity from the plant to the bacteria and the strict requirement for the presence of sulfated lipochitooligosaccharides (Nod factors [NFs]) at its reducing end. Here, we present evidence of the presence of a functional nodH-encoded NF sulfotransferase in the Or191-like rhizobia. The nodH gene, present in single copy, maps to a high molecular weight megaplasmid. As in S. meliloti, a nodF homolog was identified immediately upstream of nodH that was transcribed in the opposite direction (local synteny). This novel nodH ortholog was cloned and shown to restore both NF sulfation and the Nif+Fix+ phenotypes when introduced into an S. meliloti nodH mutant. Unexpectedly, however, nodH disruption in the Or191-like bacteria did not abolish their ability to nodulate alfalfa, resulting instead in a severely delayed nodulation. In agreement with evidence from other authors, the nodH sequence analysis strongly supports the idea that the Or191-like rhizobia most likely represent a genetic mosaic resulting from the horizontal transfer of symbiotic genes from a sinorhizobial megaplasmid to a not yet clearly identified ancestor.