Laura Crossey | University of New Mexico (original) (raw)
Papers by Laura Crossey
Geology, 2006
Geochemical study of water and gas discharging from the deeply incised aquifer system at the Gran... more Geochemical study of water and gas discharging from the deeply incised aquifer system at the Grand Canyon, Arizona, provides a paradigm for understanding complex groundwater mixing phenomena, and Quaternary travertines deposited from cool springs provide a paleohydrologic record of this mixing. Geochemical data show that springs have marked compositional variability: those associated with active travertine accumulations (deeply derived endogenic waters) are more saline, richer in CO 2 , and elevated in 87 Sr/ 86 Sr relative to springs derived dominantly from surface recharge of plateau aquifers (epigenic waters). Endogenic waters and associated travertine are preferentially located along basement-penetrating faults. We propose a model whereby deeply derived fluids are conveyed upward via both magmatism and seismicity. Our model is supported by: (1) gas analyses from spring waters with high He/Ar and He/N 2 and 3 He/ 4 He ratios indicating the presence of mantle-derived He; (2) large volumes of travertine and CO 2 -rich gases in springs recording high CO 2 fluxes; and (3) 87 Sr/ 86 Sr in these springs that indicate circulation of waters through Precambrian basement. Geochemical trends are explained by mixing of epigenic waters of the Colorado Plateau aquifers with different endogenic end-member waters in different tectonic subprovinces. Endogenic waters are volumetrically minor but have significant effects on water chemistry. They are an important and largely unrecognized component of the hydrogeochemistry and neotectonics of the southwestern United States.
Geosphere, 2021
The Surprise Valley landslide complex is the name used here for a group of prominent river-dammin... more The Surprise Valley landslide complex is the name used here for a group of prominent river-damming landslides in Grand Canyon (Arizona, USA) that has shifted the path of the Colorado River several times in the past 2 m.y. We document a sequence of eight landslides. Three are Toreva-block landslides containing back-rotated but only mildly disrupted bedrock stratigraphy. The largest of these landslides, Surprise Valley landslide, is hypothesized to have dammed the Colorado River, cut off a meander loop through Surprise Valley, and rerouted the river 2.5 km south to near its present course at the Granite Narrows. Another bedrock landslide, Poncho’s runup, involved a mass detachment from the north side of the river that drove a kilometer-scale bedrock slab across the river and up the south canyon wall to a height of 823 m above the river. A lake behind this landslide is inferred from the presence of mainstem gravels atop the slide that represent the approximate spillway elevation. We po...
Geological Society of America Abstracts with Programs, 2018
Hydrogeology Journal, 2019
The western Great Artesian Basin (GAB) is an important water source for pastoral and town water s... more The western Great Artesian Basin (GAB) is an important water source for pastoral and town water supplies, as well as for springs containing endemic flora and fauna, within arid Australia. This study focuses on the hydrochemical variations of groundwater and spring discharge in order to determine the major geochemical processes responsible for water quality and evolution across the western GAB. Regional hydrochemical trends within groundwater generally support the modern groundwater potentiometric surface and interpreted flow paths, highlighting that these approximately represent the long-term flow paths. Additionally, the regional chemical variations along the flow paths in the western GAB are complex, with their composition being a function of several controlling processes, including location of recharge, evapo-concentration, mixing and various water–rock interactions. These processes cause groundwater east of Lake Eyre to be predominantly of Na-HCO 3 type, whereas groundwater originating from the western margin is of Na-Cl-(-SO 4 ) type. The GAB springs appear to be discharging water predominantly from the main GAB aquifer, the J Aquifer; however, a component of the discharging water from several springs is from a source other than the J Aquifer. Current understanding of the hydrochemical variations of groundwater and spring discharge of the western GAB can help provide constraints on groundwater flow, as well as provide an understanding of the geochemical and hydrological processes responsible for water quality evolution. Le Grand Bassin Artésien occidental (GBA) est une ressource en eau importante pour l’approvisionnement en eau agricole et potable, ainsi que pour les sources présentant une flore et une faune endémiques de l’Australie aride. Cette étude porte sur les variations hydrochimiques des eaux souterraines et du débit des sources afin de déterminer les principaux processus géochimiques responsables de la qualité de l’eau et de son évolution dans l’ensemble du GBA occidental. Les tendances hydrochimiques régionales dans les eaux souterraines sont en accord avec la surface piézométrique et les circulations observées, en soulignant qu’elles représentent approximativement les voies d’écoulement à long terme. En outre, les variations chimiques régionales le long des axes de circulation dans le GBA occidental sont complexes, la composition des eaux dépendant de plusieurs processus de contrôle, y compris la localisation de la recharge, la concentration par évaporation, les processus de mélange et les diverses interactions eau-roche. Ces processus sont tels que les eaux souterraines à l’est du lac Eyre sont principalement de type Na-HCO 3 , tandis que les eaux souterraines provenant de la marge ouest sont de type Na-Cl-(-SO 4 ). Les sources du GBA semblent majoritairement alimentées par l’aquifère principal du GBA, l’aquifère J; cependant, une composante de l’eau de plusieurs sources provient d’une autre origine que l’aquifère J. La compréhension actuelle des variations hydrochimiques des eaux souterraines et des sources du GBA occidental peut aider à fournir des contraintes concernant l’écoulement des eaux souterraines, ainsi qu’à mieux comprendre les processus géochimiques et hydrologiques responsables de l’évolution de la qualité de l’eau. La Great Artesian Basin (GAB) occidental es una importante fuente de agua para el abastecimiento de agua de pastoreo y de las ciudades, así como para los manantiales que contienen flora y fauna endémicas, dentro de la Australia árida. Este estudio se enfoca en las variaciones hidroquímicas del agua subterránea y de la descarga de manantiales para determinar los principales procesos geoquímicos responsables de la calidad y evolución del agua a través del GAB occidental. Las tendencias hidroquímicas regionales dentro del agua subterránea generalmente respaldan la superficie potenciométrica moderna del agua subterránea y las trayectorias de flujo interpretadas, destacando que éstas representan aproximadamente las trayectorias de flujo a largo plazo. Además, las variaciones químicas regionales a lo largo de las trayectorias de flujo en el GAB occidental son complejas, siendo su composición una función de varios procesos de control, incluyendo la ubicación de la recarga, la evapoconcentración, la mezcla y varias interacciones agua-roca. Estos procesos hacen que las aguas subterráneas al este del lago Eyre sean predominantemente del tipo Na-HCO 3 , mientras que las aguas subterráneas que se originan en el margen occidental son del tipo Na-Cl-(-SO 4 ). Los manantiales del GAB parecen estar descargando agua predominantemente del acuífero principal del GAB, el Acuífero J; sin embargo, un componente del agua descargada de varios manantiales proviene de una fuente distinta al Acuífero J. El conocimiento actual de las variaciones hidroquímicas de las aguas subterráneas y de la descarga de manantiales del GAB occidental puede ayudar a controlar el flujo de las aguas…
Hydrogeology Journal, 2019
Dalhousie Springs is the largest spring complex in the western Great Artesian Basin (GAB), Austra... more Dalhousie Springs is the largest spring complex in the western Great Artesian Basin (GAB), Australia. Aridland springs like Dalhousie provide the only aquatic habitats in regions lacking surface water and are globally threatened by unsustainable groundwater development. Groundwater use in the more densely populated eastern GAB historically was higher than that in the western GAB, where groundwater is primarily used for ranching; however, economically important mineral and energy industries have increased groundwater use. Throughout the western GAB, groundwater development has reduced spring discharge and artesian head. Of concern are potential impacts on spring discharge from future pumping; thus, an understanding of groundwater sources to springs is needed to develop effective groundwater management strategies that maintain spring flow. The generally accepted hydrogeologic model suggests Dalhousie Springs discharge is entirely composed of Jurassic-Cretaceous aquifer contributions; however, this study improves understanding of Dalhousie Springs by integrating new hydrogeologic and hydrochemical data with historic, previously unpublished petroleum exploration well-test data. A thermal model is used to estimate potential aquifer source depths of 270–802 m. 87 Sr/ 86 Sr > 0.715 suggests water–rock interaction with radiogenic basement and the importance of faults for vertical fluid transfer across multiple aquifers. Results show that Dalhousie Springs discharge is sourced by the previously unreported Permian Crown Point Formation and the Jurassic-Cretaceous aquifer. Mitigating effects of future groundwater development on Dalhousie Springs requires managing groundwater from Jurassic-Cretaceous and Permian aquifers to preserve near-spring potentiometric surfaces. Expanded multiple-environmental-tracer monitoring could be used to further refine groundwater sources to Dalhousie Springs. Les Sources de Dalhousie appartiennent au plus grand complexe de sources dans l’ouest du Grand Bassin Artésien (GBA), en Australie. Les sources d’Aridland comme celles de Dalhousie fournissent les seuls milieux aquatiques dans des régions déficitaires en eau de surface et qui sont de manière générale affectées par l’exploitation non durable des eaux souterraines. L’utilisation des eaux souterraines dans la partie orientale du GBA, avec la plus forte densité de population était plus importante de longue date que celle dans l’ouest du GBA, où l’eau souterraine est utilisée en premier lieu pour l’élevage; cependant, les industries minières et énergétiques d’importance économique ont contribué à une augmentation de l’utilisation des eaux souterraines. Dans toute la partie occidentale du GBA, l’exploitation des eaux souterraines a eu pour conséquence une réduction du débit des sources et de l’artésianisme. Les impacts potentiels des pompages à venir sur le débit des sources sont préoccupants. Ainsi, la compréhension des origines des écoulements des eaux souterraines vers les sources est nécessaire pour développer des stratégies de gestion efficace des eaux souterraines qui permettent un maintien des écoulements aux sources. Le modèle hydrogéologique généralement accepté suggère que la décharge des sources de Dalhousie est entièrement assurée par les contributions de l’aquifère du Jurassique et Crétacé. Cependant, cette étude améliore la compréhension du fonctionnement des sources de Dalhousie en intégrant de nouvelles données hydrogéologiques et hydrochimiques, à savoir des données historiques, non publiées auparavant, issues de l’exploration pétrolière. Un modèle thermal est utilisé pour estimer les profondeurs de 270–802 m de l’origine potentielle des eaux souterraines de l’aquifère. Le rapport isotopique 87 Sr/ 86 Sr > 0.715 suggère une interaction eau–roche avec le socle radiogénique et l’importance des failles pour la drainance verticale ascendante des fluides au travers des aquifères multiples. Les résultats montrent que la décharge des sources de Dalhousie trouve son origine dans la formation Crown Point du Permien, jamais mentionné auparavant, et de l’aquifère du Jurassique et Crétacé. Pour atténuer les effets de l’exploitation future des eaux souterraines sur les sources de Dalhousie, il faut gérer les eaux souterraines des aquifères du Jurassique-Crétacé et du Permien afin de préserver les surfaces piézométriques à proximité des sources. L’élargissement du suivi à l’aide de traceurs environnementaux multiples pourrait être utilisé pour préciser davantage l’origine des eaux souterraines qui s’écoulent jusqu’aux sources de Dalhousie. Dalhousie Springs es el complejo de manantiales más grande del oeste de la Great Artesian Basin (GAB), Australia. Los manantiales de tierras áridas como los de Dalhousie son los únicos hábitats acuáticos en regiones que carecen de agua superficial y están amenazados a nivel mundial por un desarrollo no sostenible de las aguas subterráneas. El uso de agua subterránea en el GAB oriental más densamente…
Geosphere, 2019
Structural evidence presented here documents that deformation was ongoing within the lower Colora... more Structural evidence presented here documents that deformation was ongoing within the lower Colorado River corridor (southwestern USA) during and after the latest Miocene Epoch, postdating large-magnitude extension and metamorphic core complex formation. Geometric and kinematic data collected on faults in key geologic units constrain the timing of deformation in relation to the age of the Bouse Formation, a unit that records the first arrival and integration of the Colorado River. North-south–striking extensional, NW-SE–striking oblique dextral, NE-SW–striking oblique sinistral, and east-west–striking contractional faults and related structures are observed to deform pre– (>6 Ma), syn– (6–4.8 Ma), and post–Bouse Formation (<4.8 Ma) strata. Fault displacements are typically at the centimeter to meter scale, and locally exhibit 10-m-scale displacements. Bouse Formation basalt carbonate locally exhibits outcrop-scale (tens of meters) syndepositional dips of 30°–90°, draped over an...
Geological Society of America Abstracts with Programs, 2019
Geological Society of America Abstracts with Programs, 2018
Geological Society of America Abstracts with Programs, 2018
Geological Society of America Abstracts with Programs, 2018
Geology, 2006
Geochemical study of water and gas discharging from the deeply incised aquifer system at the Gran... more Geochemical study of water and gas discharging from the deeply incised aquifer system at the Grand Canyon, Arizona, provides a paradigm for understanding complex groundwater mixing phenomena, and Quaternary travertines deposited from cool springs provide a paleohydrologic record of this mixing. Geochemical data show that springs have marked compositional variability: those associated with active travertine accumulations (deeply derived endogenic waters) are more saline, richer in CO 2 , and elevated in 87 Sr/ 86 Sr relative to springs derived dominantly from surface recharge of plateau aquifers (epigenic waters). Endogenic waters and associated travertine are preferentially located along basement-penetrating faults. We propose a model whereby deeply derived fluids are conveyed upward via both magmatism and seismicity. Our model is supported by: (1) gas analyses from spring waters with high He/Ar and He/N 2 and 3 He/ 4 He ratios indicating the presence of mantle-derived He; (2) large volumes of travertine and CO 2 -rich gases in springs recording high CO 2 fluxes; and (3) 87 Sr/ 86 Sr in these springs that indicate circulation of waters through Precambrian basement. Geochemical trends are explained by mixing of epigenic waters of the Colorado Plateau aquifers with different endogenic end-member waters in different tectonic subprovinces. Endogenic waters are volumetrically minor but have significant effects on water chemistry. They are an important and largely unrecognized component of the hydrogeochemistry and neotectonics of the southwestern United States.
Geosphere, 2021
The Surprise Valley landslide complex is the name used here for a group of prominent river-dammin... more The Surprise Valley landslide complex is the name used here for a group of prominent river-damming landslides in Grand Canyon (Arizona, USA) that has shifted the path of the Colorado River several times in the past 2 m.y. We document a sequence of eight landslides. Three are Toreva-block landslides containing back-rotated but only mildly disrupted bedrock stratigraphy. The largest of these landslides, Surprise Valley landslide, is hypothesized to have dammed the Colorado River, cut off a meander loop through Surprise Valley, and rerouted the river 2.5 km south to near its present course at the Granite Narrows. Another bedrock landslide, Poncho’s runup, involved a mass detachment from the north side of the river that drove a kilometer-scale bedrock slab across the river and up the south canyon wall to a height of 823 m above the river. A lake behind this landslide is inferred from the presence of mainstem gravels atop the slide that represent the approximate spillway elevation. We po...
Geological Society of America Abstracts with Programs, 2018
Hydrogeology Journal, 2019
The western Great Artesian Basin (GAB) is an important water source for pastoral and town water s... more The western Great Artesian Basin (GAB) is an important water source for pastoral and town water supplies, as well as for springs containing endemic flora and fauna, within arid Australia. This study focuses on the hydrochemical variations of groundwater and spring discharge in order to determine the major geochemical processes responsible for water quality and evolution across the western GAB. Regional hydrochemical trends within groundwater generally support the modern groundwater potentiometric surface and interpreted flow paths, highlighting that these approximately represent the long-term flow paths. Additionally, the regional chemical variations along the flow paths in the western GAB are complex, with their composition being a function of several controlling processes, including location of recharge, evapo-concentration, mixing and various water–rock interactions. These processes cause groundwater east of Lake Eyre to be predominantly of Na-HCO 3 type, whereas groundwater originating from the western margin is of Na-Cl-(-SO 4 ) type. The GAB springs appear to be discharging water predominantly from the main GAB aquifer, the J Aquifer; however, a component of the discharging water from several springs is from a source other than the J Aquifer. Current understanding of the hydrochemical variations of groundwater and spring discharge of the western GAB can help provide constraints on groundwater flow, as well as provide an understanding of the geochemical and hydrological processes responsible for water quality evolution. Le Grand Bassin Artésien occidental (GBA) est une ressource en eau importante pour l’approvisionnement en eau agricole et potable, ainsi que pour les sources présentant une flore et une faune endémiques de l’Australie aride. Cette étude porte sur les variations hydrochimiques des eaux souterraines et du débit des sources afin de déterminer les principaux processus géochimiques responsables de la qualité de l’eau et de son évolution dans l’ensemble du GBA occidental. Les tendances hydrochimiques régionales dans les eaux souterraines sont en accord avec la surface piézométrique et les circulations observées, en soulignant qu’elles représentent approximativement les voies d’écoulement à long terme. En outre, les variations chimiques régionales le long des axes de circulation dans le GBA occidental sont complexes, la composition des eaux dépendant de plusieurs processus de contrôle, y compris la localisation de la recharge, la concentration par évaporation, les processus de mélange et les diverses interactions eau-roche. Ces processus sont tels que les eaux souterraines à l’est du lac Eyre sont principalement de type Na-HCO 3 , tandis que les eaux souterraines provenant de la marge ouest sont de type Na-Cl-(-SO 4 ). Les sources du GBA semblent majoritairement alimentées par l’aquifère principal du GBA, l’aquifère J; cependant, une composante de l’eau de plusieurs sources provient d’une autre origine que l’aquifère J. La compréhension actuelle des variations hydrochimiques des eaux souterraines et des sources du GBA occidental peut aider à fournir des contraintes concernant l’écoulement des eaux souterraines, ainsi qu’à mieux comprendre les processus géochimiques et hydrologiques responsables de l’évolution de la qualité de l’eau. La Great Artesian Basin (GAB) occidental es una importante fuente de agua para el abastecimiento de agua de pastoreo y de las ciudades, así como para los manantiales que contienen flora y fauna endémicas, dentro de la Australia árida. Este estudio se enfoca en las variaciones hidroquímicas del agua subterránea y de la descarga de manantiales para determinar los principales procesos geoquímicos responsables de la calidad y evolución del agua a través del GAB occidental. Las tendencias hidroquímicas regionales dentro del agua subterránea generalmente respaldan la superficie potenciométrica moderna del agua subterránea y las trayectorias de flujo interpretadas, destacando que éstas representan aproximadamente las trayectorias de flujo a largo plazo. Además, las variaciones químicas regionales a lo largo de las trayectorias de flujo en el GAB occidental son complejas, siendo su composición una función de varios procesos de control, incluyendo la ubicación de la recarga, la evapoconcentración, la mezcla y varias interacciones agua-roca. Estos procesos hacen que las aguas subterráneas al este del lago Eyre sean predominantemente del tipo Na-HCO 3 , mientras que las aguas subterráneas que se originan en el margen occidental son del tipo Na-Cl-(-SO 4 ). Los manantiales del GAB parecen estar descargando agua predominantemente del acuífero principal del GAB, el Acuífero J; sin embargo, un componente del agua descargada de varios manantiales proviene de una fuente distinta al Acuífero J. El conocimiento actual de las variaciones hidroquímicas de las aguas subterráneas y de la descarga de manantiales del GAB occidental puede ayudar a controlar el flujo de las aguas…
Hydrogeology Journal, 2019
Dalhousie Springs is the largest spring complex in the western Great Artesian Basin (GAB), Austra... more Dalhousie Springs is the largest spring complex in the western Great Artesian Basin (GAB), Australia. Aridland springs like Dalhousie provide the only aquatic habitats in regions lacking surface water and are globally threatened by unsustainable groundwater development. Groundwater use in the more densely populated eastern GAB historically was higher than that in the western GAB, where groundwater is primarily used for ranching; however, economically important mineral and energy industries have increased groundwater use. Throughout the western GAB, groundwater development has reduced spring discharge and artesian head. Of concern are potential impacts on spring discharge from future pumping; thus, an understanding of groundwater sources to springs is needed to develop effective groundwater management strategies that maintain spring flow. The generally accepted hydrogeologic model suggests Dalhousie Springs discharge is entirely composed of Jurassic-Cretaceous aquifer contributions; however, this study improves understanding of Dalhousie Springs by integrating new hydrogeologic and hydrochemical data with historic, previously unpublished petroleum exploration well-test data. A thermal model is used to estimate potential aquifer source depths of 270–802 m. 87 Sr/ 86 Sr > 0.715 suggests water–rock interaction with radiogenic basement and the importance of faults for vertical fluid transfer across multiple aquifers. Results show that Dalhousie Springs discharge is sourced by the previously unreported Permian Crown Point Formation and the Jurassic-Cretaceous aquifer. Mitigating effects of future groundwater development on Dalhousie Springs requires managing groundwater from Jurassic-Cretaceous and Permian aquifers to preserve near-spring potentiometric surfaces. Expanded multiple-environmental-tracer monitoring could be used to further refine groundwater sources to Dalhousie Springs. Les Sources de Dalhousie appartiennent au plus grand complexe de sources dans l’ouest du Grand Bassin Artésien (GBA), en Australie. Les sources d’Aridland comme celles de Dalhousie fournissent les seuls milieux aquatiques dans des régions déficitaires en eau de surface et qui sont de manière générale affectées par l’exploitation non durable des eaux souterraines. L’utilisation des eaux souterraines dans la partie orientale du GBA, avec la plus forte densité de population était plus importante de longue date que celle dans l’ouest du GBA, où l’eau souterraine est utilisée en premier lieu pour l’élevage; cependant, les industries minières et énergétiques d’importance économique ont contribué à une augmentation de l’utilisation des eaux souterraines. Dans toute la partie occidentale du GBA, l’exploitation des eaux souterraines a eu pour conséquence une réduction du débit des sources et de l’artésianisme. Les impacts potentiels des pompages à venir sur le débit des sources sont préoccupants. Ainsi, la compréhension des origines des écoulements des eaux souterraines vers les sources est nécessaire pour développer des stratégies de gestion efficace des eaux souterraines qui permettent un maintien des écoulements aux sources. Le modèle hydrogéologique généralement accepté suggère que la décharge des sources de Dalhousie est entièrement assurée par les contributions de l’aquifère du Jurassique et Crétacé. Cependant, cette étude améliore la compréhension du fonctionnement des sources de Dalhousie en intégrant de nouvelles données hydrogéologiques et hydrochimiques, à savoir des données historiques, non publiées auparavant, issues de l’exploration pétrolière. Un modèle thermal est utilisé pour estimer les profondeurs de 270–802 m de l’origine potentielle des eaux souterraines de l’aquifère. Le rapport isotopique 87 Sr/ 86 Sr > 0.715 suggère une interaction eau–roche avec le socle radiogénique et l’importance des failles pour la drainance verticale ascendante des fluides au travers des aquifères multiples. Les résultats montrent que la décharge des sources de Dalhousie trouve son origine dans la formation Crown Point du Permien, jamais mentionné auparavant, et de l’aquifère du Jurassique et Crétacé. Pour atténuer les effets de l’exploitation future des eaux souterraines sur les sources de Dalhousie, il faut gérer les eaux souterraines des aquifères du Jurassique-Crétacé et du Permien afin de préserver les surfaces piézométriques à proximité des sources. L’élargissement du suivi à l’aide de traceurs environnementaux multiples pourrait être utilisé pour préciser davantage l’origine des eaux souterraines qui s’écoulent jusqu’aux sources de Dalhousie. Dalhousie Springs es el complejo de manantiales más grande del oeste de la Great Artesian Basin (GAB), Australia. Los manantiales de tierras áridas como los de Dalhousie son los únicos hábitats acuáticos en regiones que carecen de agua superficial y están amenazados a nivel mundial por un desarrollo no sostenible de las aguas subterráneas. El uso de agua subterránea en el GAB oriental más densamente…
Geosphere, 2019
Structural evidence presented here documents that deformation was ongoing within the lower Colora... more Structural evidence presented here documents that deformation was ongoing within the lower Colorado River corridor (southwestern USA) during and after the latest Miocene Epoch, postdating large-magnitude extension and metamorphic core complex formation. Geometric and kinematic data collected on faults in key geologic units constrain the timing of deformation in relation to the age of the Bouse Formation, a unit that records the first arrival and integration of the Colorado River. North-south–striking extensional, NW-SE–striking oblique dextral, NE-SW–striking oblique sinistral, and east-west–striking contractional faults and related structures are observed to deform pre– (>6 Ma), syn– (6–4.8 Ma), and post–Bouse Formation (<4.8 Ma) strata. Fault displacements are typically at the centimeter to meter scale, and locally exhibit 10-m-scale displacements. Bouse Formation basalt carbonate locally exhibits outcrop-scale (tens of meters) syndepositional dips of 30°–90°, draped over an...
Geological Society of America Abstracts with Programs, 2019
Geological Society of America Abstracts with Programs, 2018
Geological Society of America Abstracts with Programs, 2018
Geological Society of America Abstracts with Programs, 2018