MOHAMMAD JAWAID / INTROP | UPM - Universiti Putra Malaysia (original) (raw)
Uploads
Papers by MOHAMMAD JAWAID / INTROP
Agro-wastes, oil palm trunk core or sap was utilized for the production of new palm-wood material... more Agro-wastes, oil palm trunk core or sap was utilized for the production of new palm-wood material using phenol formaldehyde resin as a matrix. The kiln-dried (moisture content 10%) oil palm trunk was impregnated with phenol formaldehyde resin using a high power vacuum pump. The oil palm trunk core lumber (OPTCL) was loaded with different percentages of phenol formaldehyde (PF) resin. The mechanical properties (tensile, flexural, and impact) and physical properties (water absorption and density) were studied and compared with rubberwood. Testing of mechanical and physical properties was done according to the ASTM standard. The morphology of the resin loaded OPTCL was analyzed by using Scanning Electron Microscopy (SEM). In general, the result showed that impregnated OPTCL exhibited good mechanical and physical properties when compared with untreated oil palm trunk core (OPTCL with 0% resin content) and rubberwood. Tensile and flexural strength of OPTCL increased with the increase in the resin content up to 15% and showed a decreasing trend with the increase in the loading percentage beyond 15%.The impact strength also increased with the increase in the resin content from 5% to 15%. However, impregnated OPTCL with 15% resin loading showed lower water absorption uptake as compared with the other composite materials and rubberwood. SEM micrograph confirmed that the resin was impregnated efficiently within the pores of OPTCL fibers.
Handbook of Polymer Nanocomposites. Processing, Performance and Application, 2014
ABSTRACT The nanocellulose and its composites have been covered in this chapter which is confirme... more ABSTRACT The nanocellulose and its composites have been covered in this chapter which is confirmed to be a very versatile material having the wide range of medical applications, including cardiovascular implants, scaffolds for tissue engineering, repair of articular cartilage, vascular grafts, urethral catheters, mammary prostheses, penile prostheses, adhesion barriers, and artificial skin. These implants were produced from bioresorbable and/or biodegradable materials. Nanocellulose, such as that produced other than microfibrillated cellulose and cellulose nanowhiskers, is also produced by the bacteria (bacterial cellulose, BC) which is also an emerging biomaterial with great potential as a biological implant, wound and burn dressing material, and scaffolds for tissue regeneration. Moreover, the nanostructure and morphological similarities with collagen make cellulose attractive for cell immobilization and cell support. This article describes current and future applications of cellulosic nanofibers in the biomedical field. Cellulose micro-/nanofibril as a reinforcing material for composites is becoming more and more attractive to researchers in composite science because of its potential lightweight and high strength. In the present article, we have reviewed the nanocellulosic fibers-based nanocomposites for medical applications. Processing methods, properties, and various applications of cellulosic composites are also discussed in this article. However, the separation of cellulose nanofibers along with the manufacture of cellulose nanocomposites is still challengeable. The aim of this chapter is to demonstrate the current state of development in the field of cellulose nanofibril-based nanocomposite research and application through examples.
This review considers the potential and challenges of using agro-based oil palm biomasses, includ... more This review considers the potential and challenges of using agro-based oil palm biomasses, including the trunk, frond, empty fruit bunch, and palm press fiber biocomposites, for furniture applications. Currently, design and quality rather than price are becoming the primary concern for consumers when buying new furniture. Within this context, this paper focuses on the design of innovative, sustainable furniture from agrobased biocomposites to meet the needs of future population growth and technology. This research also discusses the need for biocomposite materials that do not depend on the growth of populations, but on the growth and development of the economy. This study focuses on globally available agro-based biocomposites, especially those from oil palm biomass: plywood, medium density fiberboard (MDF), wood plastic composite (WPC), laminated veneer lumber (LVL), oriented strand board (OSB), hardboards, and particleboard. Additional positive aspects of biocomposites are their environmentally friendly character, high quality, competitive design, and capacity to improve the value proposition of high-end products. These attributes increase the demand for agro-based biocomposite furniture on the international market.
In this study, oil palm trunk core-lumber (OPTCL) producing from oil palm based plywood industrie... more In this study, oil palm trunk core-lumber (OPTCL) producing from oil palm based plywood industries waste materials was studied using microwave drying technique for material optimization. Microwave dried oil palm trunk core part was impregnated with phenol formaldehyde resin as a matrix by using high-pressure vacuum impregnation chamber. Microwave drying optimized the drying conditions, avoided burning, shrinkage and increased the permeability of oil palm trunk (OPT). OPTCL impregnated in different times and compared with kiln dried OPTCL and rubber wood (RW). Impregnation of microwave dried core part of oil palm trunk was carried out first time. The microwave dried impregnated OPTCL exhibited higher mechanical properties as compared to microwave dried. Results indicated that OPTCL impregnated for 60 min shows lower mechanical properties as compared to RW. The morphology of resin loaded oil palm trunk core cell wall or lumen ultra structure was analyzed by scanning electron microscope (SEM) and it clearly showed full penetration of resin into OPTCL cell. The mechanical properties of impregnated samples were analyzed according to BS and ASTM standards.
The aim of this study is to utilize the bio-agricultural waste as filler material for composite p... more The aim of this study is to utilize the bio-agricultural waste as filler material for composite production which are abundantly available and low cost compared to the silica, alumina etc. The lacks of sufficient scientific information about the utilization of the oil palm ash (OPA) on composites production were the driving force for the choice of this work. Furthermore, the effect of filler loading percentage on physical, mechanical, thermal and morphology properties of the epoxy nanocomposites were studied. It was concluded that the size of the OPA had been successfully reduced from macromolecular to the nano-size range by high energy ball milling and was confirmed by TEM analysis. The density of the nano-structured OPA filled epoxy composites revealed that increasing filler loading will eventually increase the density. The tensile and flexural strength attained maximum value when the filler loading was 3%. Also, increase in the thermal stability was observed in case of 3% filler loading and was attributed to the increase in cross-linking of the epoxy resin in the presence of nanostuctured OPA and having minimum particle to particle interaction and well dispersed nanoparticles.
In this study, 25-year-old oil palm biomass (OPB) fiber—polypropylene (PP) composites are prepare... more In this study, 25-year-old oil palm biomass (OPB) fiber—polypropylene (PP) composites are prepared by five different fiber loadings (10, 20, 30, 40, and 50%). The types of OPB used are oil palm empty fruit bunches, oil palm frond, and oil palm trunk. Transmission electron microscopy has confirmed that the cell wall structures of the various oil palm fibers have different cell wall thicknesses and exhibit the same ultrastructure as that of wood. The fibers consist of middle lamella, primary, and thick secondary walls with different thicknesses for different types of fibers. The secondary wall is differentiated into a S1 layer, a unique multi-lamellae S 2 layer, and a S3 layer. OPB fibers are compounded with PP using a Brabender DSK 42/7 twin screw extruder. The mechanical features such as tensile, flexural and impact properties of the OPB—PP composite are studied. The melt flow index (MFI) of the composite materials is also studied. Generally, the results show that lower fiber loading (10%) exhibits the highest tensile strength and MFI properties as compared to higher fiber loading (50%). Evidence of a fiber—matrix interphase is analyzed using scanning electron microscopy.
The hybrid composites were fabricated by taking cheaply available empty fruit bunch fibers and ju... more The hybrid composites were fabricated by taking cheaply available empty fruit bunch fibers and jute fibers trilayers as reinforcement in epoxy matrix using simple hand lay-up-technique. Thermal, mechanical and morphological properties were characterized. The notched izod impact strength of most hybrids increased with respect to the virgin matrix. The laminates coupled with 2-Hydoxy ethyl acrylate (HEA) showed better impact properties than the one without coupling agent. The addition of fibers and coupling agent considerably improved the thermal stability (i.e., decomposition and residue content) of the hybrids. The thermal properties measured by thermogravimetric analysis (TGA) showed that fibres and coupling agents improved thermal properties. The impact fractured composite specimens were analyzed using field emission scanning electron microscopy (FESEM) to know the morphological behaviour.
In this article, we study laminated bio-composites that were reinforced with empty fruit bunches.... more In this article, we study laminated bio-composites that were reinforced with empty fruit bunches. Five-ply veneer laminated bio-composites were prepared by alternately arranging oil palm trunk veneer and empty fruit bunch mat. Composites were made with a gluing layer of 250 or 450 g/m2of phenol formaldehyde. The mechanical, physical, and thermal (TGA) properties of the composite were studied. Results indicated an improvement in mechanical, physical, and thermal properties of the laminated bio-composites with the use of empty fruit bunches as reinforcement. The water absorption and thickness swelling of laminated bio-composites that were reinforced with empty fruit bunches were better than bio-composites not reinforced with empty fruit bunches. Laminated bio-composites with the use of empty fruit bunch as reinforcement showed better bending strength, bending modulus, and screw withdrawal. Thermal stability for laminated bio-composites with empty fruit bunch also improved. Images taken with a scanning electron micrograph indicated an improvement in the fiber-matrix bonding for the laminated panel glued with 450 g/m2of phenol formaldehyde.
Agro-wastes, oil palm trunk core or sap was utilized for the production of new palm-wood material... more Agro-wastes, oil palm trunk core or sap was utilized for the production of new palm-wood material using phenol formaldehyde resin as a matrix. The kiln-dried (moisture content 10%) oil palm trunk was impregnated with phenol formaldehyde resin using a high power vacuum pump. The oil palm trunk core lumber (OPTCL) was loaded with different percentages of phenol formaldehyde (PF) resin. The mechanical properties (tensile, flexural, and impact) and physical properties (water absorption and density) were studied and compared with rubberwood. Testing of mechanical and physical properties was done according to the ASTM standard. The morphology of the resin loaded OPTCL was analyzed by using Scanning Electron Microscopy (SEM). In general, the result showed that impregnated OPTCL exhibited good mechanical and physical properties when compared with untreated oil palm trunk core (OPTCL with 0% resin content) and rubberwood. Tensile and flexural strength of OPTCL increased with the increase in the resin content up to 15% and showed a decreasing trend with the increase in the loading percentage beyond 15%.The impact strength also increased with the increase in the resin content from 5% to 15%. However, impregnated OPTCL with 15% resin loading showed lower water absorption uptake as compared with the other composite materials and rubberwood. SEM micrograph confirmed that the resin was impregnated efficiently within the pores of OPTCL fibers.
Handbook of Polymer Nanocomposites. Processing, Performance and Application, 2014
ABSTRACT The nanocellulose and its composites have been covered in this chapter which is confirme... more ABSTRACT The nanocellulose and its composites have been covered in this chapter which is confirmed to be a very versatile material having the wide range of medical applications, including cardiovascular implants, scaffolds for tissue engineering, repair of articular cartilage, vascular grafts, urethral catheters, mammary prostheses, penile prostheses, adhesion barriers, and artificial skin. These implants were produced from bioresorbable and/or biodegradable materials. Nanocellulose, such as that produced other than microfibrillated cellulose and cellulose nanowhiskers, is also produced by the bacteria (bacterial cellulose, BC) which is also an emerging biomaterial with great potential as a biological implant, wound and burn dressing material, and scaffolds for tissue regeneration. Moreover, the nanostructure and morphological similarities with collagen make cellulose attractive for cell immobilization and cell support. This article describes current and future applications of cellulosic nanofibers in the biomedical field. Cellulose micro-/nanofibril as a reinforcing material for composites is becoming more and more attractive to researchers in composite science because of its potential lightweight and high strength. In the present article, we have reviewed the nanocellulosic fibers-based nanocomposites for medical applications. Processing methods, properties, and various applications of cellulosic composites are also discussed in this article. However, the separation of cellulose nanofibers along with the manufacture of cellulose nanocomposites is still challengeable. The aim of this chapter is to demonstrate the current state of development in the field of cellulose nanofibril-based nanocomposite research and application through examples.
This review considers the potential and challenges of using agro-based oil palm biomasses, includ... more This review considers the potential and challenges of using agro-based oil palm biomasses, including the trunk, frond, empty fruit bunch, and palm press fiber biocomposites, for furniture applications. Currently, design and quality rather than price are becoming the primary concern for consumers when buying new furniture. Within this context, this paper focuses on the design of innovative, sustainable furniture from agrobased biocomposites to meet the needs of future population growth and technology. This research also discusses the need for biocomposite materials that do not depend on the growth of populations, but on the growth and development of the economy. This study focuses on globally available agro-based biocomposites, especially those from oil palm biomass: plywood, medium density fiberboard (MDF), wood plastic composite (WPC), laminated veneer lumber (LVL), oriented strand board (OSB), hardboards, and particleboard. Additional positive aspects of biocomposites are their environmentally friendly character, high quality, competitive design, and capacity to improve the value proposition of high-end products. These attributes increase the demand for agro-based biocomposite furniture on the international market.
In this study, oil palm trunk core-lumber (OPTCL) producing from oil palm based plywood industrie... more In this study, oil palm trunk core-lumber (OPTCL) producing from oil palm based plywood industries waste materials was studied using microwave drying technique for material optimization. Microwave dried oil palm trunk core part was impregnated with phenol formaldehyde resin as a matrix by using high-pressure vacuum impregnation chamber. Microwave drying optimized the drying conditions, avoided burning, shrinkage and increased the permeability of oil palm trunk (OPT). OPTCL impregnated in different times and compared with kiln dried OPTCL and rubber wood (RW). Impregnation of microwave dried core part of oil palm trunk was carried out first time. The microwave dried impregnated OPTCL exhibited higher mechanical properties as compared to microwave dried. Results indicated that OPTCL impregnated for 60 min shows lower mechanical properties as compared to RW. The morphology of resin loaded oil palm trunk core cell wall or lumen ultra structure was analyzed by scanning electron microscope (SEM) and it clearly showed full penetration of resin into OPTCL cell. The mechanical properties of impregnated samples were analyzed according to BS and ASTM standards.
The aim of this study is to utilize the bio-agricultural waste as filler material for composite p... more The aim of this study is to utilize the bio-agricultural waste as filler material for composite production which are abundantly available and low cost compared to the silica, alumina etc. The lacks of sufficient scientific information about the utilization of the oil palm ash (OPA) on composites production were the driving force for the choice of this work. Furthermore, the effect of filler loading percentage on physical, mechanical, thermal and morphology properties of the epoxy nanocomposites were studied. It was concluded that the size of the OPA had been successfully reduced from macromolecular to the nano-size range by high energy ball milling and was confirmed by TEM analysis. The density of the nano-structured OPA filled epoxy composites revealed that increasing filler loading will eventually increase the density. The tensile and flexural strength attained maximum value when the filler loading was 3%. Also, increase in the thermal stability was observed in case of 3% filler loading and was attributed to the increase in cross-linking of the epoxy resin in the presence of nanostuctured OPA and having minimum particle to particle interaction and well dispersed nanoparticles.
In this study, 25-year-old oil palm biomass (OPB) fiber—polypropylene (PP) composites are prepare... more In this study, 25-year-old oil palm biomass (OPB) fiber—polypropylene (PP) composites are prepared by five different fiber loadings (10, 20, 30, 40, and 50%). The types of OPB used are oil palm empty fruit bunches, oil palm frond, and oil palm trunk. Transmission electron microscopy has confirmed that the cell wall structures of the various oil palm fibers have different cell wall thicknesses and exhibit the same ultrastructure as that of wood. The fibers consist of middle lamella, primary, and thick secondary walls with different thicknesses for different types of fibers. The secondary wall is differentiated into a S1 layer, a unique multi-lamellae S 2 layer, and a S3 layer. OPB fibers are compounded with PP using a Brabender DSK 42/7 twin screw extruder. The mechanical features such as tensile, flexural and impact properties of the OPB—PP composite are studied. The melt flow index (MFI) of the composite materials is also studied. Generally, the results show that lower fiber loading (10%) exhibits the highest tensile strength and MFI properties as compared to higher fiber loading (50%). Evidence of a fiber—matrix interphase is analyzed using scanning electron microscopy.
The hybrid composites were fabricated by taking cheaply available empty fruit bunch fibers and ju... more The hybrid composites were fabricated by taking cheaply available empty fruit bunch fibers and jute fibers trilayers as reinforcement in epoxy matrix using simple hand lay-up-technique. Thermal, mechanical and morphological properties were characterized. The notched izod impact strength of most hybrids increased with respect to the virgin matrix. The laminates coupled with 2-Hydoxy ethyl acrylate (HEA) showed better impact properties than the one without coupling agent. The addition of fibers and coupling agent considerably improved the thermal stability (i.e., decomposition and residue content) of the hybrids. The thermal properties measured by thermogravimetric analysis (TGA) showed that fibres and coupling agents improved thermal properties. The impact fractured composite specimens were analyzed using field emission scanning electron microscopy (FESEM) to know the morphological behaviour.
In this article, we study laminated bio-composites that were reinforced with empty fruit bunches.... more In this article, we study laminated bio-composites that were reinforced with empty fruit bunches. Five-ply veneer laminated bio-composites were prepared by alternately arranging oil palm trunk veneer and empty fruit bunch mat. Composites were made with a gluing layer of 250 or 450 g/m2of phenol formaldehyde. The mechanical, physical, and thermal (TGA) properties of the composite were studied. Results indicated an improvement in mechanical, physical, and thermal properties of the laminated bio-composites with the use of empty fruit bunches as reinforcement. The water absorption and thickness swelling of laminated bio-composites that were reinforced with empty fruit bunches were better than bio-composites not reinforced with empty fruit bunches. Laminated bio-composites with the use of empty fruit bunch as reinforcement showed better bending strength, bending modulus, and screw withdrawal. Thermal stability for laminated bio-composites with empty fruit bunch also improved. Images taken with a scanning electron micrograph indicated an improvement in the fiber-matrix bonding for the laminated panel glued with 450 g/m2of phenol formaldehyde.