Valentin Georgiev | Uppsala University (original) (raw)
Papers by Valentin Georgiev
Quantum chemistry has nowadays become a powerful and efficient tool that can be successfully used... more Quantum chemistry has nowadays become a powerful and efficient tool that can be successfully used for studies of biosystems. It is therefore possibleto model the enzyme active-site and the reaction ...
Journal of cheminformatics, 2018
Docking and scoring large libraries of ligands against target proteins forms the basis of structu... more Docking and scoring large libraries of ligands against target proteins forms the basis of structure-based virtual screening. The problem is trivially parallelizable, and calculations are generally carried out on computer clusters or on large workstations in a brute force manner, by docking and scoring all available ligands. In this study we propose a strategy that is based on iteratively docking a set of ligands to form a training set, training a ligand-based model on this set, and predicting the remainder of the ligands to exclude those predicted as 'low-scoring' ligands. Then, another set of ligands are docked, the model is retrained and the process is repeated until a certain model efficiency level is reached. Thereafter, the remaining ligands are docked or excluded based on this model. We use SVM and conformal prediction to deliver valid prediction intervals for ranking the predicted ligands, and Apache Spark to parallelize both the docking and the modeling. We show on 4...
PLoS ONE, 2013
A unified proteochemometric (PCM) model for the prediction of the ability of drug-like chemicals ... more A unified proteochemometric (PCM) model for the prediction of the ability of drug-like chemicals to inhibit five major drug metabolizing CYP isoforms (i.e. CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) was created and made publicly available under the Bioclipse Decision Support open source system at www.cyp450model.org. In regards to the proteochemometric modeling we represented the chemical compounds by molecular signature descriptors and the CYP-isoforms by alignmentindependent description of composition and transition of amino acid properties of their protein primary sequences. The entire training dataset contained 63 391 interactions and the best PCM model was obtained using signature descriptors of height 1, 2 and 3 and inducing the model with a support vector machine. The model showed excellent predictive ability with internal AUC = 0.923 and an external AUC = 0.940, as evaluated on a large external dataset. The advantage of PCM models is their extensibility making it possible to extend our model for new CYP isoforms and polymorphic CYP forms. A key benefit of PCM is that all proteins are confined in one single model, which makes it generally more stable and predictive as compared with single target models. The inclusion of the model in Bioclipse Decision Support makes it possible to make virtual instantaneous predictions (,100 ms per prediction) while interactively drawing or modifying chemical structures in the Bioclipse chemical structure editor.
Summary: Bioclipse, a graphical workbench for the life sciences, pro-vides functionality for mana... more Summary: Bioclipse, a graphical workbench for the life sciences, pro-vides functionality for managing and visualizing life science data. We introduce Bioclipse-R, which integrates Bioclipse and the statistical programming language R. The synergy between Bioclipse and R is demonstrated by the construction of a decision support system for anticancer drug screening and mutagenicity prediction, which shows how Bioclipse-R can be used to perform complex tasks from within a single software system. Availability and implementation: Bioclipse-R is implemented as a set of Java plug-ins for Bioclipse based on the R-package rj. Source code and binary packages are available from
Quantum chemistry has nowadays become a powerful and efficient tool that can be successfully used... more Quantum chemistry has nowadays become a powerful and efficient tool that can be successfully used for studies of biosystems. It is therefore possibleto model the enzyme active-site and the reaction ...
Journal of cheminformatics, 2018
Docking and scoring large libraries of ligands against target proteins forms the basis of structu... more Docking and scoring large libraries of ligands against target proteins forms the basis of structure-based virtual screening. The problem is trivially parallelizable, and calculations are generally carried out on computer clusters or on large workstations in a brute force manner, by docking and scoring all available ligands. In this study we propose a strategy that is based on iteratively docking a set of ligands to form a training set, training a ligand-based model on this set, and predicting the remainder of the ligands to exclude those predicted as 'low-scoring' ligands. Then, another set of ligands are docked, the model is retrained and the process is repeated until a certain model efficiency level is reached. Thereafter, the remaining ligands are docked or excluded based on this model. We use SVM and conformal prediction to deliver valid prediction intervals for ranking the predicted ligands, and Apache Spark to parallelize both the docking and the modeling. We show on 4...
PLoS ONE, 2013
A unified proteochemometric (PCM) model for the prediction of the ability of drug-like chemicals ... more A unified proteochemometric (PCM) model for the prediction of the ability of drug-like chemicals to inhibit five major drug metabolizing CYP isoforms (i.e. CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) was created and made publicly available under the Bioclipse Decision Support open source system at www.cyp450model.org. In regards to the proteochemometric modeling we represented the chemical compounds by molecular signature descriptors and the CYP-isoforms by alignmentindependent description of composition and transition of amino acid properties of their protein primary sequences. The entire training dataset contained 63 391 interactions and the best PCM model was obtained using signature descriptors of height 1, 2 and 3 and inducing the model with a support vector machine. The model showed excellent predictive ability with internal AUC = 0.923 and an external AUC = 0.940, as evaluated on a large external dataset. The advantage of PCM models is their extensibility making it possible to extend our model for new CYP isoforms and polymorphic CYP forms. A key benefit of PCM is that all proteins are confined in one single model, which makes it generally more stable and predictive as compared with single target models. The inclusion of the model in Bioclipse Decision Support makes it possible to make virtual instantaneous predictions (,100 ms per prediction) while interactively drawing or modifying chemical structures in the Bioclipse chemical structure editor.
Summary: Bioclipse, a graphical workbench for the life sciences, pro-vides functionality for mana... more Summary: Bioclipse, a graphical workbench for the life sciences, pro-vides functionality for managing and visualizing life science data. We introduce Bioclipse-R, which integrates Bioclipse and the statistical programming language R. The synergy between Bioclipse and R is demonstrated by the construction of a decision support system for anticancer drug screening and mutagenicity prediction, which shows how Bioclipse-R can be used to perform complex tasks from within a single software system. Availability and implementation: Bioclipse-R is implemented as a set of Java plug-ins for Bioclipse based on the R-package rj. Source code and binary packages are available from