Zoltan Dekan | The University of Queensland, Australia (original) (raw)
Papers by Zoltan Dekan
Biomedicines
Ant venoms have recently attracted increased attention due to their chemical complexity, novel mo... more Ant venoms have recently attracted increased attention due to their chemical complexity, novel molecular frameworks, and diverse biological activities. The heterodimeric peptide ∆-myrtoxin-Mp1a (Mp1a) from the venom of the Australian jack jumper ant, Myrmecia pilosula, exhibits antimicrobial, membrane-disrupting, and pain-inducing activities. In the present study, we examined the activity of Mp1a and a panel of synthetic analogues against the gastrointestinal parasitic nematode Haemonchus contortus, the fruit fly Drosophila melanogaster, and for their ability to stimulate pain-sensing neurons. Mp1a was found to be both insecticidal and anthelmintic, and it robustly activated mammalian sensory neurons at concentrations similar to those reported to elicit antimicrobial and cytotoxic activity. The native antiparallel Mp1a heterodimer was more potent than heterodimers with alternative disulfide connectivity, as well as monomeric analogues. We conclude that the membrane-disrupting effect...
Proceedings of the National Academy of Sciences
Venoms have evolved independently several times in Lepidoptera. Limacodidae is a family with worl... more Venoms have evolved independently several times in Lepidoptera. Limacodidae is a family with worldwide distribution, many of which are venomous in the larval stage, but the composition and mode of action of their venom is unknown. Here, we use imaging technologies, transcriptomics, proteomics, and functional assays to provide a holistic picture of the venom system of a limacodid caterpillar, Doratifera vulnerans. Contrary to dogma that defensive venoms are simple in composition, D. vulnerans produces a complex venom containing 151 proteinaceous toxins spanning 59 families, most of which are peptides <10 kDa. Three of the most abundant families of venom peptides (vulnericins) are 1) analogs of the adipokinetic hormone/corazonin-related neuropeptide, some of which are picomolar agonists of the endogenous insect receptor; 2) linear cationic peptides derived from cecropin, an insect innate immune peptide that kills bacteria and parasites by disrupting cell membranes; and 3) disulfide...
Biomedicines
Spider venom is a novel source of disulfide-rich peptides with potent and selective activity at v... more Spider venom is a novel source of disulfide-rich peptides with potent and selective activity at voltage-gated sodium channels (NaV). Here, we describe the discovery of μ-theraphotoxin-Pme1a and μ/δ-theraphotoxin-Pme2a, two novel peptides from the venom of the Gooty Ornamental tarantula Poecilotheria metallica that modulate NaV channels. Pme1a is a 35 residue peptide that inhibits NaV1.7 peak current (IC50 334 ± 114 nM) and shifts the voltage dependence of activation to more depolarised membrane potentials (V1/2 activation: Δ = +11.6 mV). Pme2a is a 33 residue peptide that delays fast inactivation and inhibits NaV1.7 peak current (EC50 > 10 μM). Synthesis of a [+22K]Pme2a analogue increased potency at NaV1.7 (IC50 5.6 ± 1.1 μM) and removed the effect of the native peptide on fast inactivation, indicating that a lysine at position 22 (Pme2a numbering) is important for inhibitory activity. Results from this study may be used to guide the rational design of spider venom-derived pepti...
British Journal of Pharmacology
Scientific Reports
Cone snails use separately evolved venoms for prey capture and defence. While most use a harpoon ... more Cone snails use separately evolved venoms for prey capture and defence. While most use a harpoon for prey capture, the Gastridium clade that includes the well-studied Conus geographus and Conus tulipa, have developed a net hunting strategy to catch fish. This unique feeding behaviour requires secretion of “nirvana cabal” peptides to dampen the escape response of targeted fish allowing for their capture directly by mouth. However, the active components of the nirvana cabal remain poorly defined. In this study, we evaluated the behavioural effects of likely nirvana cabal peptides on the teleost model, Danio rerio (zebrafish). Surprisingly, the conantokins (NMDA receptor antagonists) and/or conopressins (vasopressin receptor agonists and antagonists) found in C. geographus and C. tulipa venom failed to produce a nirvana cabal-like effect in zebrafish. In contrast, low concentrations of the non-competitive adrenoceptor antagonist ρ-TIA found in C. tulipa venom (EC50 = 190 nM) dramatical...
Proceedings of the National Academy of Sciences
An Australian estuarine isolate of Penicillium sp. MST-MF667 yielded 3 tetrapeptides named the bi... more An Australian estuarine isolate of Penicillium sp. MST-MF667 yielded 3 tetrapeptides named the bilaids with an unusual alternating LDLD chirality. Given their resemblance to known short peptide opioid agonists, we elucidated that they were weak (Ki low micromolar) μ-opioid agonists, which led to the design of bilorphin, a potent and selective μ-opioid receptor (MOPr) agonist (Ki 1.1 nM). In sharp contrast to all-natural product opioid peptides that efficaciously recruit β-arrestin, bilorphin is G protein biased, weakly phosphorylating the MOPr and marginally recruiting β-arrestin, with no receptor internalization. Importantly, bilorphin exhibits a similar G protein bias to oliceridine, a small nonpeptide with improved overdose safety. Molecular dynamics simulations of bilorphin and the strongly arrestin-biased endomorphin-2 with the MOPr indicate distinct receptor interactions and receptor conformations that could underlie their large differences in bias. Whereas bilorphin is system...
PAIN
Pain is the leading cause of disability in the developed world but remains a poorly treated condi... more Pain is the leading cause of disability in the developed world but remains a poorly treated condition. Specifically, post-surgical pain continues to be a frequent and undermanaged condition. Here, we investigate the analgesic potential of pharmacological NaV1.7 inhibition in a mouse model of acute post-surgical pain, based on incision of the plantar skin and underlying muscle of the hind paw. We demonstrate that local and systemic treatment with the selective NaV1.7 inhibitor μ-theraphotoxin-Pn3a is effectively anti-allodynic in this model and completely reverses mechanical hypersensitivity in the absence of motor adverse effects. In addition, the selective NaV1.7 inhibitors ProTx-II and PF-04856264 as well as the clinical candidate CNV1014802 also reduced mechanical allodynia. Interestingly, co-administration of the opioid receptor antagonist naloxone completely reversed analgesic effects of Pn3a, indicating an involvement of endogenous opioids in the analgesic activity of Pn3a. Additionally, we found super-additive antinociceptive effects of sub-therapeutic Pn3a doses not only with the opioid oxycodone but also with the GABAB receptor agonist baclofen. Transcriptomic analysis of gene expression changes in dorsal root ganglia of mice post-surgery did not reveal any changes in mRNA expression of endogenous opioids or opioid receptors, however several genes involved in pain, including Runx1 (Runt related transcription factor 1), Cacna1a (CaV2.1) and Cacna1b (CaV2.2) were downregulated. In summary, these findings suggest that pain after surgery can be successfully treated with NaV1.7 inhibitors alone or in combination with baclofen or opioids, which may present a novel and safe treatment strategy for this frequent and poorly managed condition.
Biochemical pharmacology, Jan 25, 2018
Recently, we and other groups revealed that gain-of-function mutations in the human ether à go-go... more Recently, we and other groups revealed that gain-of-function mutations in the human ether à go-go voltage-gated potassium channel hEAG1 (K10.1) lead to developmental disorders with associated infantile-onset epilepsy. However, the physiological role of hEAG1 in the central nervous system remains elusive. Potent and selective antagonists of hEAG1 are therefore much sought after, both as pharmacological tools for studying the (patho)physiological functions of this enigmatic channel and as potential leads for development of anti-epileptic drugs. Since animal venoms are a rich source of potent ion channel modifiers that have been finely tuned by millions of year of evolution, we screened 108 arachnid venoms for hEAG1 inhibitors using electrophysiology. Two hit peptides (Aa1a and Ap1a) were isolated, sequenced, and chemically synthesised for structure-function studies. Both of these hEAG1 inhibitors are C-terminally amidated peptides containing an inhibitor cystine knot motif, which prov...
Cellular and molecular life sciences : CMLS, Jan 14, 2018
Sea anemone venoms have long been recognized as a rich source of peptides with interesting pharma... more Sea anemone venoms have long been recognized as a rich source of peptides with interesting pharmacological and structural properties, but they still contain many uncharacterized bioactive compounds. Here we report the discovery, three-dimensional structure, activity, tissue localization, and putative function of a novel sea anemone peptide toxin that constitutes a new, sixth type of voltage-gated potassium channel (K) toxin from sea anemones. Comprised of just 17 residues, κ-actitoxin-Ate1a (Ate1a) is the shortest sea anemone toxin reported to date, and it adopts a novel three-dimensional structure that we have named the Proline-Hinged Asymmetric β-hairpin (PHAB) fold. Mass spectrometry imaging and bioassays suggest that Ate1a serves a primarily predatory function by immobilising prey, and we show this is achieved through inhibition of Shaker-type K channels. Ate1a is encoded as a multi-domain precursor protein that yields multiple identical mature peptides, which likely evolved by ...
Angewandte Chemie (International ed. in English), Jan 5, 2017
Conotoxins are a large family of disulfide-rich peptides that contain unique cysteine frameworks ... more Conotoxins are a large family of disulfide-rich peptides that contain unique cysteine frameworks that target a broad range of ion channels and receptors. We recently discovered the 33-residue conotoxin Φ-MiXXVIIA from Conus miles with a novel cysteine framework comprising three consecutive cysteine residues and four disulfide bonds. Regioselective chemical synthesis helped decipher the disulfide bond connectivity and the structure of Φ-MiXXVIIA was determined by NMR spectroscopy. The 3D structure displays a unique topology containing two β-hairpins that resemble the N-terminal domain of granulin. Similar to granulin, Φ-MiXXVIIA promotes cell proliferation (EC50 17.85 μM) while inhibiting apoptosis (EC50 2.2 μM). Additional framework XXVII sequences were discovered with homologous signal peptides that define the new conotoxin superfamily G2. The novel structure and biological activity of Φ-MiXXVIIA expands the repertoire of disulfide-rich conotoxins that recognize mammalian receptors.
British journal of pharmacology, Aug 24, 2017
Naturally occurring dysfunction in NaV channels results in complex disorders such as chronic pain... more Naturally occurring dysfunction in NaV channels results in complex disorders such as chronic pain, making these channels an attractive target for new therapies. In the pursuit of novel NaV modulators, we investigated spider venoms for new inhibitors of NaV channels. We used high-throughput screens to identify a NaV modulator in venom of the spider Davus fasciatus. Further characterization of this venom peptide was undertaken using fluorescent and electrophysiological assays, molecular modeling and a rodent pain model. We identified a potent NaV inhibitor named μ-TRTX-Df1a. This 34-residue peptide fully inhibited responses mediated by NaV 1.7 endogenously expressed in SH-SY5Y cells. Df1a also inhibited CaV 3 currents but had no activity against KV 2. The modelled structure of Df1a, which contains an inhibitor cystine knot motif, is reminiscent of the NaV channel toxin ProTx-I. Electrophysiology revealed that Df1a inhibits all NaV subtypes tested (hNaV 1.1-1.7). Df1a also slowed fast ...
Nature, Jan 6, 2016
Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary... more Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibres of the pain pathway. Local anaesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes of these channels and their contributions to chemical, mechanical, or thermal pain. Here we identify and characterize spider (Heteroscodra maculata) toxins that selectively activate the Nav1.1 subtype, the role of which in nociception and pain has not been elucidated. We use these probes to show that Nav1.1-expressing fibres are modality-specific nociceptors: their activation elicits robust pain behaviours without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibres also express Nav1.1 and show enhanced toxin sensitivity in a mouse model of irritable bowel syndrome. Togeth...
Biophysical Journal, 2016
The Journal of biological chemistry, Jan 29, 2016
The μO-conotoxins MrVIA, MrVIB and MfVIA inhibit the voltage-gated sodium channel NaV1.8, a well-... more The μO-conotoxins MrVIA, MrVIB and MfVIA inhibit the voltage-gated sodium channel NaV1.8, a well-described target for the treatment of pain; however, little is known about the residues or structural elements that define this activity. In this study, we determined the three-dimensional structure of MfVIA, examined its membrane-binding properties, performed alanine-scanning mutagenesis and identified residues important for its activity at human NaV1.8. A second round of mutations resulted in [E5K,E8K]MfVIA, a double mutant with greater positive surface charge and greater affinity for lipid membranes compared to MfVIA. This analogue had increased potency at NaV1.8 and was analgesic in the mouse formalin assay.
Int J Pept Res Ther, 2007
The 13-residue peptide, v-conotoxin MrIA extracted from the venom of Conus marmoreus, is a potent... more The 13-residue peptide, v-conotoxin MrIA extracted from the venom of Conus marmoreus, is a potent and selective inhibitor of the human noradrenaline transporter (NET). With the aim of improving its biophysical properties, chemical modifications were performed including the attachment of a lipophilic amino acid at the N-terminus and cyclisation of the peptide backbone with functionality introduced into the linker. All v-conotoxin MrIA analogues were assembled on solid phase by highly optimised Boc chemistry and N-to C-cyclic analogues accessed by cysteine-mediated intramolecular native chemical ligation. In vitro biological activity at the human NET was evaluated by functional assays. All analogues inhibited the uptake of [ 3 H]noradrenaline with comparable potencies to that of the native peptide, with one of the analogues, the linear N-terminal aminotetradecanoyl MrIA showing a 3-fold increase in potency (p < 0.05).
Scientific reports, 2015
For the past 30 years, oocytes from Xenopus laevis have been extensively used to express and char... more For the past 30 years, oocytes from Xenopus laevis have been extensively used to express and characterise ion channels in an easily controlled environment. Here we report the first use of oocytes from the closely related species Xenopus borealis as an alternative expression system for neuronal ion channels. Using the two-electrode voltage-clamp technique, we show that a wide variety of voltage- and ligand-gated ion channels have the same channel properties and pharmacological profiles when expressed in either X. laevis or X. borealis oocytes. Potential advantages of the X. borealis oocytes include a smaller endogenous chloride current and the ability to produce more intense fluorescence signals when studied with voltage-clamp fluorometry. Scanning electron microscopy revealed a difference in vitelline membrane structure between the two species, which may be related to the discrepancy in fluorescence signals observed. We demonstrate that X. borealis oocytes are a viable heterologous ...
Molecular Pharmacology, 2015
Spider venoms are a rich source of ion channel modulators with therapeutic potential. Given the a... more Spider venoms are a rich source of ion channel modulators with therapeutic potential. Given the analgesic potential of subtype-selective inhibitors of voltage-gated sodium (NaV) channels, we screened spider venoms for inhibitors of human NaV1.7 using a high-throughput fluorescent assay. Here, we describe the discovery of a novel NaV1.7 inhibitor, μ-TRTX-Tp1a (Tp1a), isolated from the venom of the Peruvian green-velvet tarantula Thrixopelma pruriens. Recombinant and synthetic forms of this 33-residue peptide preferentially inhibited hNav1.7 &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; hNav1.6 &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; hNav1.2 &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; hNav1.1 &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; hNav1.3 channels in fluorescent assays. NaV1.7 inhibition was diminished (IC50 11.5 nM), and the association rate decreased, for the C-terminal acid form of Tp1a compared to the native amidated form (IC50 2.1 nM), suggesting that the peptide C-terminus contributes to its interaction with hNaV1.7. Tp1a had no effect on human voltage-gated calcium channels or nicotinic acetylcholine receptors at 5 μM. Unlike most spider toxins that modulate NaV channels, Tp1a inhibited hNav1.7 without significantly altering the voltage-dependence of activation or inactivation. Tp1a proved to be analgesic by reversing spontaneous pain induced in mice by intraplantar injection in OD1, a scorpion toxin that potentiates hNav1.7. The structure of Tp1a as determined using NMR spectroscopy revealed a classical inhibitor cystine knot motif (ICK). The molecular surface of Tp1a presents a hydrophobic patch surrounded by positively charged residues, with subtle differences to other ICK spider toxins that might contribute to its different pharmacological profile. Tp1a may help guide the development of more selective and potent hNaV1.7 inhibitors for treatment of chronic pain.
Biomedicines
Ant venoms have recently attracted increased attention due to their chemical complexity, novel mo... more Ant venoms have recently attracted increased attention due to their chemical complexity, novel molecular frameworks, and diverse biological activities. The heterodimeric peptide ∆-myrtoxin-Mp1a (Mp1a) from the venom of the Australian jack jumper ant, Myrmecia pilosula, exhibits antimicrobial, membrane-disrupting, and pain-inducing activities. In the present study, we examined the activity of Mp1a and a panel of synthetic analogues against the gastrointestinal parasitic nematode Haemonchus contortus, the fruit fly Drosophila melanogaster, and for their ability to stimulate pain-sensing neurons. Mp1a was found to be both insecticidal and anthelmintic, and it robustly activated mammalian sensory neurons at concentrations similar to those reported to elicit antimicrobial and cytotoxic activity. The native antiparallel Mp1a heterodimer was more potent than heterodimers with alternative disulfide connectivity, as well as monomeric analogues. We conclude that the membrane-disrupting effect...
Proceedings of the National Academy of Sciences
Venoms have evolved independently several times in Lepidoptera. Limacodidae is a family with worl... more Venoms have evolved independently several times in Lepidoptera. Limacodidae is a family with worldwide distribution, many of which are venomous in the larval stage, but the composition and mode of action of their venom is unknown. Here, we use imaging technologies, transcriptomics, proteomics, and functional assays to provide a holistic picture of the venom system of a limacodid caterpillar, Doratifera vulnerans. Contrary to dogma that defensive venoms are simple in composition, D. vulnerans produces a complex venom containing 151 proteinaceous toxins spanning 59 families, most of which are peptides <10 kDa. Three of the most abundant families of venom peptides (vulnericins) are 1) analogs of the adipokinetic hormone/corazonin-related neuropeptide, some of which are picomolar agonists of the endogenous insect receptor; 2) linear cationic peptides derived from cecropin, an insect innate immune peptide that kills bacteria and parasites by disrupting cell membranes; and 3) disulfide...
Biomedicines
Spider venom is a novel source of disulfide-rich peptides with potent and selective activity at v... more Spider venom is a novel source of disulfide-rich peptides with potent and selective activity at voltage-gated sodium channels (NaV). Here, we describe the discovery of μ-theraphotoxin-Pme1a and μ/δ-theraphotoxin-Pme2a, two novel peptides from the venom of the Gooty Ornamental tarantula Poecilotheria metallica that modulate NaV channels. Pme1a is a 35 residue peptide that inhibits NaV1.7 peak current (IC50 334 ± 114 nM) and shifts the voltage dependence of activation to more depolarised membrane potentials (V1/2 activation: Δ = +11.6 mV). Pme2a is a 33 residue peptide that delays fast inactivation and inhibits NaV1.7 peak current (EC50 > 10 μM). Synthesis of a [+22K]Pme2a analogue increased potency at NaV1.7 (IC50 5.6 ± 1.1 μM) and removed the effect of the native peptide on fast inactivation, indicating that a lysine at position 22 (Pme2a numbering) is important for inhibitory activity. Results from this study may be used to guide the rational design of spider venom-derived pepti...
British Journal of Pharmacology
Scientific Reports
Cone snails use separately evolved venoms for prey capture and defence. While most use a harpoon ... more Cone snails use separately evolved venoms for prey capture and defence. While most use a harpoon for prey capture, the Gastridium clade that includes the well-studied Conus geographus and Conus tulipa, have developed a net hunting strategy to catch fish. This unique feeding behaviour requires secretion of “nirvana cabal” peptides to dampen the escape response of targeted fish allowing for their capture directly by mouth. However, the active components of the nirvana cabal remain poorly defined. In this study, we evaluated the behavioural effects of likely nirvana cabal peptides on the teleost model, Danio rerio (zebrafish). Surprisingly, the conantokins (NMDA receptor antagonists) and/or conopressins (vasopressin receptor agonists and antagonists) found in C. geographus and C. tulipa venom failed to produce a nirvana cabal-like effect in zebrafish. In contrast, low concentrations of the non-competitive adrenoceptor antagonist ρ-TIA found in C. tulipa venom (EC50 = 190 nM) dramatical...
Proceedings of the National Academy of Sciences
An Australian estuarine isolate of Penicillium sp. MST-MF667 yielded 3 tetrapeptides named the bi... more An Australian estuarine isolate of Penicillium sp. MST-MF667 yielded 3 tetrapeptides named the bilaids with an unusual alternating LDLD chirality. Given their resemblance to known short peptide opioid agonists, we elucidated that they were weak (Ki low micromolar) μ-opioid agonists, which led to the design of bilorphin, a potent and selective μ-opioid receptor (MOPr) agonist (Ki 1.1 nM). In sharp contrast to all-natural product opioid peptides that efficaciously recruit β-arrestin, bilorphin is G protein biased, weakly phosphorylating the MOPr and marginally recruiting β-arrestin, with no receptor internalization. Importantly, bilorphin exhibits a similar G protein bias to oliceridine, a small nonpeptide with improved overdose safety. Molecular dynamics simulations of bilorphin and the strongly arrestin-biased endomorphin-2 with the MOPr indicate distinct receptor interactions and receptor conformations that could underlie their large differences in bias. Whereas bilorphin is system...
PAIN
Pain is the leading cause of disability in the developed world but remains a poorly treated condi... more Pain is the leading cause of disability in the developed world but remains a poorly treated condition. Specifically, post-surgical pain continues to be a frequent and undermanaged condition. Here, we investigate the analgesic potential of pharmacological NaV1.7 inhibition in a mouse model of acute post-surgical pain, based on incision of the plantar skin and underlying muscle of the hind paw. We demonstrate that local and systemic treatment with the selective NaV1.7 inhibitor μ-theraphotoxin-Pn3a is effectively anti-allodynic in this model and completely reverses mechanical hypersensitivity in the absence of motor adverse effects. In addition, the selective NaV1.7 inhibitors ProTx-II and PF-04856264 as well as the clinical candidate CNV1014802 also reduced mechanical allodynia. Interestingly, co-administration of the opioid receptor antagonist naloxone completely reversed analgesic effects of Pn3a, indicating an involvement of endogenous opioids in the analgesic activity of Pn3a. Additionally, we found super-additive antinociceptive effects of sub-therapeutic Pn3a doses not only with the opioid oxycodone but also with the GABAB receptor agonist baclofen. Transcriptomic analysis of gene expression changes in dorsal root ganglia of mice post-surgery did not reveal any changes in mRNA expression of endogenous opioids or opioid receptors, however several genes involved in pain, including Runx1 (Runt related transcription factor 1), Cacna1a (CaV2.1) and Cacna1b (CaV2.2) were downregulated. In summary, these findings suggest that pain after surgery can be successfully treated with NaV1.7 inhibitors alone or in combination with baclofen or opioids, which may present a novel and safe treatment strategy for this frequent and poorly managed condition.
Biochemical pharmacology, Jan 25, 2018
Recently, we and other groups revealed that gain-of-function mutations in the human ether à go-go... more Recently, we and other groups revealed that gain-of-function mutations in the human ether à go-go voltage-gated potassium channel hEAG1 (K10.1) lead to developmental disorders with associated infantile-onset epilepsy. However, the physiological role of hEAG1 in the central nervous system remains elusive. Potent and selective antagonists of hEAG1 are therefore much sought after, both as pharmacological tools for studying the (patho)physiological functions of this enigmatic channel and as potential leads for development of anti-epileptic drugs. Since animal venoms are a rich source of potent ion channel modifiers that have been finely tuned by millions of year of evolution, we screened 108 arachnid venoms for hEAG1 inhibitors using electrophysiology. Two hit peptides (Aa1a and Ap1a) were isolated, sequenced, and chemically synthesised for structure-function studies. Both of these hEAG1 inhibitors are C-terminally amidated peptides containing an inhibitor cystine knot motif, which prov...
Cellular and molecular life sciences : CMLS, Jan 14, 2018
Sea anemone venoms have long been recognized as a rich source of peptides with interesting pharma... more Sea anemone venoms have long been recognized as a rich source of peptides with interesting pharmacological and structural properties, but they still contain many uncharacterized bioactive compounds. Here we report the discovery, three-dimensional structure, activity, tissue localization, and putative function of a novel sea anemone peptide toxin that constitutes a new, sixth type of voltage-gated potassium channel (K) toxin from sea anemones. Comprised of just 17 residues, κ-actitoxin-Ate1a (Ate1a) is the shortest sea anemone toxin reported to date, and it adopts a novel three-dimensional structure that we have named the Proline-Hinged Asymmetric β-hairpin (PHAB) fold. Mass spectrometry imaging and bioassays suggest that Ate1a serves a primarily predatory function by immobilising prey, and we show this is achieved through inhibition of Shaker-type K channels. Ate1a is encoded as a multi-domain precursor protein that yields multiple identical mature peptides, which likely evolved by ...
Angewandte Chemie (International ed. in English), Jan 5, 2017
Conotoxins are a large family of disulfide-rich peptides that contain unique cysteine frameworks ... more Conotoxins are a large family of disulfide-rich peptides that contain unique cysteine frameworks that target a broad range of ion channels and receptors. We recently discovered the 33-residue conotoxin Φ-MiXXVIIA from Conus miles with a novel cysteine framework comprising three consecutive cysteine residues and four disulfide bonds. Regioselective chemical synthesis helped decipher the disulfide bond connectivity and the structure of Φ-MiXXVIIA was determined by NMR spectroscopy. The 3D structure displays a unique topology containing two β-hairpins that resemble the N-terminal domain of granulin. Similar to granulin, Φ-MiXXVIIA promotes cell proliferation (EC50 17.85 μM) while inhibiting apoptosis (EC50 2.2 μM). Additional framework XXVII sequences were discovered with homologous signal peptides that define the new conotoxin superfamily G2. The novel structure and biological activity of Φ-MiXXVIIA expands the repertoire of disulfide-rich conotoxins that recognize mammalian receptors.
British journal of pharmacology, Aug 24, 2017
Naturally occurring dysfunction in NaV channels results in complex disorders such as chronic pain... more Naturally occurring dysfunction in NaV channels results in complex disorders such as chronic pain, making these channels an attractive target for new therapies. In the pursuit of novel NaV modulators, we investigated spider venoms for new inhibitors of NaV channels. We used high-throughput screens to identify a NaV modulator in venom of the spider Davus fasciatus. Further characterization of this venom peptide was undertaken using fluorescent and electrophysiological assays, molecular modeling and a rodent pain model. We identified a potent NaV inhibitor named μ-TRTX-Df1a. This 34-residue peptide fully inhibited responses mediated by NaV 1.7 endogenously expressed in SH-SY5Y cells. Df1a also inhibited CaV 3 currents but had no activity against KV 2. The modelled structure of Df1a, which contains an inhibitor cystine knot motif, is reminiscent of the NaV channel toxin ProTx-I. Electrophysiology revealed that Df1a inhibits all NaV subtypes tested (hNaV 1.1-1.7). Df1a also slowed fast ...
Nature, Jan 6, 2016
Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary... more Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibres of the pain pathway. Local anaesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes of these channels and their contributions to chemical, mechanical, or thermal pain. Here we identify and characterize spider (Heteroscodra maculata) toxins that selectively activate the Nav1.1 subtype, the role of which in nociception and pain has not been elucidated. We use these probes to show that Nav1.1-expressing fibres are modality-specific nociceptors: their activation elicits robust pain behaviours without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibres also express Nav1.1 and show enhanced toxin sensitivity in a mouse model of irritable bowel syndrome. Togeth...
Biophysical Journal, 2016
The Journal of biological chemistry, Jan 29, 2016
The μO-conotoxins MrVIA, MrVIB and MfVIA inhibit the voltage-gated sodium channel NaV1.8, a well-... more The μO-conotoxins MrVIA, MrVIB and MfVIA inhibit the voltage-gated sodium channel NaV1.8, a well-described target for the treatment of pain; however, little is known about the residues or structural elements that define this activity. In this study, we determined the three-dimensional structure of MfVIA, examined its membrane-binding properties, performed alanine-scanning mutagenesis and identified residues important for its activity at human NaV1.8. A second round of mutations resulted in [E5K,E8K]MfVIA, a double mutant with greater positive surface charge and greater affinity for lipid membranes compared to MfVIA. This analogue had increased potency at NaV1.8 and was analgesic in the mouse formalin assay.
Int J Pept Res Ther, 2007
The 13-residue peptide, v-conotoxin MrIA extracted from the venom of Conus marmoreus, is a potent... more The 13-residue peptide, v-conotoxin MrIA extracted from the venom of Conus marmoreus, is a potent and selective inhibitor of the human noradrenaline transporter (NET). With the aim of improving its biophysical properties, chemical modifications were performed including the attachment of a lipophilic amino acid at the N-terminus and cyclisation of the peptide backbone with functionality introduced into the linker. All v-conotoxin MrIA analogues were assembled on solid phase by highly optimised Boc chemistry and N-to C-cyclic analogues accessed by cysteine-mediated intramolecular native chemical ligation. In vitro biological activity at the human NET was evaluated by functional assays. All analogues inhibited the uptake of [ 3 H]noradrenaline with comparable potencies to that of the native peptide, with one of the analogues, the linear N-terminal aminotetradecanoyl MrIA showing a 3-fold increase in potency (p < 0.05).
Scientific reports, 2015
For the past 30 years, oocytes from Xenopus laevis have been extensively used to express and char... more For the past 30 years, oocytes from Xenopus laevis have been extensively used to express and characterise ion channels in an easily controlled environment. Here we report the first use of oocytes from the closely related species Xenopus borealis as an alternative expression system for neuronal ion channels. Using the two-electrode voltage-clamp technique, we show that a wide variety of voltage- and ligand-gated ion channels have the same channel properties and pharmacological profiles when expressed in either X. laevis or X. borealis oocytes. Potential advantages of the X. borealis oocytes include a smaller endogenous chloride current and the ability to produce more intense fluorescence signals when studied with voltage-clamp fluorometry. Scanning electron microscopy revealed a difference in vitelline membrane structure between the two species, which may be related to the discrepancy in fluorescence signals observed. We demonstrate that X. borealis oocytes are a viable heterologous ...
Molecular Pharmacology, 2015
Spider venoms are a rich source of ion channel modulators with therapeutic potential. Given the a... more Spider venoms are a rich source of ion channel modulators with therapeutic potential. Given the analgesic potential of subtype-selective inhibitors of voltage-gated sodium (NaV) channels, we screened spider venoms for inhibitors of human NaV1.7 using a high-throughput fluorescent assay. Here, we describe the discovery of a novel NaV1.7 inhibitor, μ-TRTX-Tp1a (Tp1a), isolated from the venom of the Peruvian green-velvet tarantula Thrixopelma pruriens. Recombinant and synthetic forms of this 33-residue peptide preferentially inhibited hNav1.7 &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; hNav1.6 &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; hNav1.2 &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; hNav1.1 &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; hNav1.3 channels in fluorescent assays. NaV1.7 inhibition was diminished (IC50 11.5 nM), and the association rate decreased, for the C-terminal acid form of Tp1a compared to the native amidated form (IC50 2.1 nM), suggesting that the peptide C-terminus contributes to its interaction with hNaV1.7. Tp1a had no effect on human voltage-gated calcium channels or nicotinic acetylcholine receptors at 5 μM. Unlike most spider toxins that modulate NaV channels, Tp1a inhibited hNav1.7 without significantly altering the voltage-dependence of activation or inactivation. Tp1a proved to be analgesic by reversing spontaneous pain induced in mice by intraplantar injection in OD1, a scorpion toxin that potentiates hNav1.7. The structure of Tp1a as determined using NMR spectroscopy revealed a classical inhibitor cystine knot motif (ICK). The molecular surface of Tp1a presents a hydrophobic patch surrounded by positively charged residues, with subtle differences to other ICK spider toxins that might contribute to its different pharmacological profile. Tp1a may help guide the development of more selective and potent hNaV1.7 inhibitors for treatment of chronic pain.