Maria Huertas | Universidad de Sevilla (original) (raw)

Papers by Maria Huertas

Research paper thumbnail of Survival in soil of different toluene-degrading Pseudomonas strains after solvent shock

Applied and environmental microbiology, 1998

We assayed the tolerance to solvents of three toluene-degrading Pseudomonas putida strains and Ps... more We assayed the tolerance to solvents of three toluene-degrading Pseudomonas putida strains and Pseudomonas mendocina KR1 in liquid and soil systems. P. putida DOT-T1 tolerated concentrations of heptane, propylbenzene, octanol, and toluene of at least 10% (vol/vol), while P. putida F1 and EEZ15 grew well in the presence of 1% (vol/vol) propylbenzene or 10% (vol/vol) heptane, but not in the presence of similar concentrations of octanol or toluene. P. mendocina KR1 grew only in the presence of heptane. All three P. putida strains were able to become established in a fluvisol soil from the Granada, Spain, area, whereas P. mendocina KR1 did not survive in this soil. The tolerance to organic solvents of all three P. putida strains was therefore assayed in soil. The addition to soil of 10% (vol/wt) heptane or 10% (vol/wt) propylbenzene did not affect the survival of the three P. putida strains. However, the addition of 10% (vol/wt) toluene led to an immediate decrease of several log units ...

Research paper thumbnail of Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons

Journal of bacteriology, 1995

Pseudomonas putida DOT-T1 was isolated after enrichment on minimal medium with 1% (vol/vol) tolue... more Pseudomonas putida DOT-T1 was isolated after enrichment on minimal medium with 1% (vol/vol) toluene as the sole C source. The strain was able to grow in the presence of 90% (vol/vol) toluene and was tolerant to organic solvents whose log P(ow) (octanol/water partition coefficient) was higher than 2.3. Solvent tolerance was inducible, as bacteria grown in the absence of toluene required an adaptation period before growth restarted. Mg2+ ions in the culture medium improved solvent tolerance. Electron micrographs showed that cells growing on high concentrations of toluene exhibited a wider periplasmic space than cells growing in the absence of toluene and preserved the outer membrane integrity. Polarographic studies and the accumulation of pathway intermediates showed that the strain used the toluene-4-monooxygenase pathway to catabolyze toluene. Although the strain also thrived in high concentrations of m- and p-xylene, these hydrocarbons could not be used as the sole C source for gro...

Research paper thumbnail of Metals in Cyanobacteria: Analysis of the Copper, Nickel, Cobalt and Arsenic Homeostasis Mechanisms

Life, 2014

Traces of metal are required for fundamental biochemical processes, such as photosynthesis and re... more Traces of metal are required for fundamental biochemical processes, such as photosynthesis and respiration. Cyanobacteria metal homeostasis acquires an important role because the photosynthetic machinery imposes a high demand for metals, making them a limiting factor for cyanobacteria, especially in the open oceans. On the other hand, in the last two centuries, the metal concentrations in marine environments and lake sediments have increased as a result of several industrial activities. In all cases, cells have to tightly regulate uptake to maintain their intracellular concentrations below toxic levels. Mechanisms to obtain metal under limiting conditions and to protect cells from an excess of metals are present in cyanobacteria. Understanding metal homeostasis in cyanobacteria and the proteins involved will help to evaluate the use of these microorganisms in metal bioremediation. Furthermore, it will also help to understand how metal availability impacts primary production in the oceans. In this review, we will focus on copper, nickel, cobalt and arsenic (a toxic metalloid) metabolism, which has been mainly analyzed in model cyanobacterium Synechocystis sp. PCC 6803.

Research paper thumbnail of Gut microbiota: in sickness and in health

Microbial Biotechnology, 2014

Research paper thumbnail of Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH

Journal of Hazardous Materials, 2010

Water containing cyanide was biologically detoxified with the bacterial strain Pseudomonas pseudo... more Water containing cyanide was biologically detoxified with the bacterial strain Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Volatilization of toxic hydrogen cyanide (HCN) was avoided by using an alkaline medium for the treatment. The operational procedure was optimized to assess cyanide biodegradation at variable pH values and dissolved oxygen concentrations. Using an initial pH of 10 without subsequent adjustment allowed total cyanide to be consumed at a mean rate of approximately 2.81 mg CN − L −1 O.D. −1 h −1 ; however, these conditions posed a high risk of HCN formation. Cyanide consumption was found to be pH-dependent. Thus, no bacterial growth was observed with a controlled pH of 10; on the other hand, pH 9.5 allowed up to 2.31 mg CN − L −1 O.D. −1 h −1 to be converted. The combination of a high pH and a low dissolved oxygen saturation (10%) minimized the release of HCN. This study contributes new basic knowledge about this biological treatment, which constitutes an effective alternative to available physico-chemical methods for the purification of wastewater containing cyanide or cyano-metal complexes.

Research paper thumbnail of Comparative genomic analysis of solvent extrusion pumps in Pseudomonas strains exhibiting different degrees of solvent tolerance

Extremophiles, 2003

Organic solvents are inherently toxic for microorganisms. Their effects depend not only on the na... more Organic solvents are inherently toxic for microorganisms. Their effects depend not only on the nature of the compound, but also on the intrinsic tolerance of the bacterial species and strains. Three efflux pumps belonging to the RND (resistance-nodulationcell division) family of multidrug extrusion pumps are the main factor involved in the high intrinsic tolerance to toluene of Pseudomonas putida DOT-T1E. We have analyzed the tolerance to toluene shocks [0.1% and 0.3% (v/v)] of a number of strains belonging to different species of the genus Pseudomonas upon growth in the absence and in the presence of sublethal concentrations of toluene. The strains can be grouped in three categories: (1) highly resistant strains, in which almost 100% of the cells precultured in the presence of sublethal concentrations of toluene withstood a 0.3% (v/v) toluene shock, (2) moderately resistant strains, in which only a fraction (10)4-1) of the cells withstood a 0.1% (v/v) toluene shock, but fewer than 1 in 10 7 cells survived a sudden 0.3% (v/v) toluene shock regardless of the growth conditions, and (3) sensitive strains, in which regardless of the growth conditions fewer than 10)5 cells survived a 0.1% (v/v) toluene shock. We also studied the number and type of efflux pumps in different strains in comparison with the P. putida DOT-T1E strain.

Research paper thumbnail of The cyanotrophic bacterium Pseudomonas pseudoalcaligenes CECT5344 responds to cyanide by defence mechanisms against iron deprivation, oxidative damage and nitrogen stress

Environmental Microbiology, 2007

Two-dimensional (2-D) electrophoresis approach has been used to test protein expression changes i... more Two-dimensional (2-D) electrophoresis approach has been used to test protein expression changes in response to cyanide in the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344. This is a cyanide-assimilating strain which also grows in media containing cyanide-enriched effluent from the jewellery industry. The bacterium efficiently uses this residue as the sole nitrogen source for aerobic growth under alkaline pH with negligible nitrogen losses as HCN. Cell-free extracts isolated from P. pseudoalcaligenes grown with a jewellery residue, free cyanide or ammonium chloride as nitrogen source were subjected to 2-D electrophoresis and the spot patterns were examined to determine differential protein expression. Electrophoretic plates exhibiting an average of 1000 spots showed significant differences in the expression of about 44 proteins depending on the nitrogen source. Some of these protein spots were analysed by Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Characterization of five of these proteins reveals that cyanide shock induces proteins related to iron acquisition, regulation of nitrogen assimilation pathways and oxidative stress repairing and protection.

Research paper thumbnail of Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344

Biochemical Society Transactions, 2005

Pseudomonas pseudoalcaligenes CECT5344 uses cyanide, cyanate, β-cyanoalanine, and other cyanoderi... more Pseudomonas pseudoalcaligenes CECT5344 uses cyanide, cyanate, β-cyanoalanine, and other cyanoderivatives as nitrogen sources under alkaline conditions, which prevents volatile HCN (pKa 9.2) formation. The cyanide consumed by this strain is stoichiometrically converted into ammonium. In addition, this bacterium grows with the heavy metal, cyanide-containing waste water generated by the jewellery industry, and is also a cyanide-resistant strain which induces an alternative oxidase and a siderophore-based mechanism for iron acquisition in the presence of cyanide. The detection of cyanase and β-cyanoalanine nitrilase activities in cyanide-induced cells suggests their implication in the cyanide degradation pathway.

Research paper thumbnail of Characterization of the Pseudomonas pseudoalcaligenes CECT5344 Cyanase, an Enzyme That Is Not Essential for Cyanide Assimilation

Applied and Environmental Microbiology, 2008

Cyanase catalyzes the decomposition of cyanate into CO2 and ammonium, with carbamate as an unstab... more Cyanase catalyzes the decomposition of cyanate into CO2 and ammonium, with carbamate as an unstable intermediate. The cyanase of Pseudomonas pseudoalcaligenes CECT5344 was negatively regulated by ammonium and positively regulated by cyanate, cyanide, and some cyanometallic complexes. Cyanase activity was not detected in cell extracts from cells grown with ammonium, even in the presence of cyanate. Nevertheless, a low level of cyanase activity was detected in nitrogen-starved cells. The cyn gene cluster of P. pseudoalcaligenes CECT5344 was cloned and analyzed. The cynA, cynB, and cynD genes encode an ABC-type transporter, the cynS gene codes for the cyanase, and the cynF gene encodes a novel σ54-dependent transcriptional regulator which is not present in other bacterial cyn gene clusters. The CynS protein was expressed in Escherichia coli and purified by following a simple and rapid protocol. The P. pseudoalcaligenes cyanase showed an optimal pH of 8.5°C and a temperature of 65°C. An...

Research paper thumbnail of Bacterial Degradation of Cyanide and Its Metal Complexes under Alkaline Conditions

Applied and Environmental Microbiology, 2005

A bacterial strain able to use cyanide as the sole nitrogen source under alkaline conditions has ... more A bacterial strain able to use cyanide as the sole nitrogen source under alkaline conditions has been isolated. The bacterium was classified as Pseudomonas pseudoalcaligenes by comparison of its 16S RNA gene sequence to those of existing strains and deposited in the Colección Española de Cultivos Tipo (Spanish Type Culture Collection) as strain CECT5344. Cyanide consumption is an assimilative process, since (i) bacterial growth was concomitant and proportional to cyanide degradation and (ii) the bacterium stoichiometrically converted cyanide into ammonium in the presence of l -methionine- d , l -sulfoximine, a glutamine synthetase inhibitor. The bacterium was able to grow in alkaline media, up to an initial pH of 11.5, and tolerated free cyanide in concentrations of up to 30 mM, which makes it a good candidate for the biological treatment of cyanide-contaminated residues. Both acetate and d , l -malate were suitable carbon sources for cyanotrophic growth, but no growth was detecte...

Research paper thumbnail of Survival in soil of different toluene-degrading Pseudomonas strains after solvent shock

Applied and …, 1998

We assayed the tolerance to solvents of three toluene-degrading Pseudomonas putida strains and Ps... more We assayed the tolerance to solvents of three toluene-degrading Pseudomonas putida strains and Pseudomonas mendocina KR1 in liquid and soil systems. P. putida DOT-T1 tolerated concentrations of heptane, propylbenzene, octanol, and toluene of at least 10% (vol/vol), while P. putida F1 and EEZ15 grew well in the presence of 1% (vol/vol) propylbenzene or 10% (vol/vol) heptane, but not in the presence of similar concentrations of octanol or toluene. P. mendocina KR1 grew only in the presence of heptane. All three P. putida strains were able to become established in a fluvisol soil from the Granada, Spain, area, whereas P. mendocina KR1 did not survive in this soil. The tolerance to organic solvents of all three P. putida strains was therefore assayed in soil. The addition to soil of 10% (vol/wt) heptane or 10% (vol/wt) propylbenzene did not affect the survival of the three P. putida strains. However, the addition of 10% (vol/wt) toluene led to an immediate decrease of several log units in the number of CFU per gram of soil for all of the strains, although P. putida F1 and DOT-T1 subsequently recovered. This recovery was influenced by the humidity of the soil and the incubation temperature. P. putida DOT-T1 recovered from the shock faster than P. putida F1; this allowed the former strain to become established at higher densities in polluted sites into which both strains had been introduced.

Research paper thumbnail of Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons

Journal of …, 1995

Pseudomonas putida DOT-T1 was isolated after enrichment on minimal medium with 1% (vol/vol) tolue... more Pseudomonas putida DOT-T1 was isolated after enrichment on minimal medium with 1% (vol/vol) toluene as the sole C source. The strain was able to grow in the presence of 90% (vol/vol) toluene and was tolerant to organic solvents whose log Pow (octanol/water ...

Research paper thumbnail of Indispensable or toxic? The phosphate versus arsenate debate

Research paper thumbnail of Tolerance to sudden organic solvent shocks by soil bacteria and characterization …

Environ. Sci. …

Upon a sudden addition of toluene to soil (10% vol/wt) a significant proportion (about 1%) of the... more Upon a sudden addition of toluene to soil (10% vol/wt) a significant proportion (about 1%) of the soil indigenous bacteria survived, the survival ones recolonized the soil to reach a high cell density. Two bacterial strains called MTB5 and MTB6, which use toluene as the sole ...

Research paper thumbnail of Survival in soil of different toluene-degrading Pseudomonas strains after solvent shock

Applied and environmental microbiology, 1998

We assayed the tolerance to solvents of three toluene-degrading Pseudomonas putida strains and Ps... more We assayed the tolerance to solvents of three toluene-degrading Pseudomonas putida strains and Pseudomonas mendocina KR1 in liquid and soil systems. P. putida DOT-T1 tolerated concentrations of heptane, propylbenzene, octanol, and toluene of at least 10% (vol/vol), while P. putida F1 and EEZ15 grew well in the presence of 1% (vol/vol) propylbenzene or 10% (vol/vol) heptane, but not in the presence of similar concentrations of octanol or toluene. P. mendocina KR1 grew only in the presence of heptane. All three P. putida strains were able to become established in a fluvisol soil from the Granada, Spain, area, whereas P. mendocina KR1 did not survive in this soil. The tolerance to organic solvents of all three P. putida strains was therefore assayed in soil. The addition to soil of 10% (vol/wt) heptane or 10% (vol/wt) propylbenzene did not affect the survival of the three P. putida strains. However, the addition of 10% (vol/wt) toluene led to an immediate decrease of several log units ...

Research paper thumbnail of Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons

Journal of bacteriology, 1995

Pseudomonas putida DOT-T1 was isolated after enrichment on minimal medium with 1% (vol/vol) tolue... more Pseudomonas putida DOT-T1 was isolated after enrichment on minimal medium with 1% (vol/vol) toluene as the sole C source. The strain was able to grow in the presence of 90% (vol/vol) toluene and was tolerant to organic solvents whose log P(ow) (octanol/water partition coefficient) was higher than 2.3. Solvent tolerance was inducible, as bacteria grown in the absence of toluene required an adaptation period before growth restarted. Mg2+ ions in the culture medium improved solvent tolerance. Electron micrographs showed that cells growing on high concentrations of toluene exhibited a wider periplasmic space than cells growing in the absence of toluene and preserved the outer membrane integrity. Polarographic studies and the accumulation of pathway intermediates showed that the strain used the toluene-4-monooxygenase pathway to catabolyze toluene. Although the strain also thrived in high concentrations of m- and p-xylene, these hydrocarbons could not be used as the sole C source for gro...

Research paper thumbnail of Metals in Cyanobacteria: Analysis of the Copper, Nickel, Cobalt and Arsenic Homeostasis Mechanisms

Life, 2014

Traces of metal are required for fundamental biochemical processes, such as photosynthesis and re... more Traces of metal are required for fundamental biochemical processes, such as photosynthesis and respiration. Cyanobacteria metal homeostasis acquires an important role because the photosynthetic machinery imposes a high demand for metals, making them a limiting factor for cyanobacteria, especially in the open oceans. On the other hand, in the last two centuries, the metal concentrations in marine environments and lake sediments have increased as a result of several industrial activities. In all cases, cells have to tightly regulate uptake to maintain their intracellular concentrations below toxic levels. Mechanisms to obtain metal under limiting conditions and to protect cells from an excess of metals are present in cyanobacteria. Understanding metal homeostasis in cyanobacteria and the proteins involved will help to evaluate the use of these microorganisms in metal bioremediation. Furthermore, it will also help to understand how metal availability impacts primary production in the oceans. In this review, we will focus on copper, nickel, cobalt and arsenic (a toxic metalloid) metabolism, which has been mainly analyzed in model cyanobacterium Synechocystis sp. PCC 6803.

Research paper thumbnail of Gut microbiota: in sickness and in health

Microbial Biotechnology, 2014

Research paper thumbnail of Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH

Journal of Hazardous Materials, 2010

Water containing cyanide was biologically detoxified with the bacterial strain Pseudomonas pseudo... more Water containing cyanide was biologically detoxified with the bacterial strain Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Volatilization of toxic hydrogen cyanide (HCN) was avoided by using an alkaline medium for the treatment. The operational procedure was optimized to assess cyanide biodegradation at variable pH values and dissolved oxygen concentrations. Using an initial pH of 10 without subsequent adjustment allowed total cyanide to be consumed at a mean rate of approximately 2.81 mg CN − L −1 O.D. −1 h −1 ; however, these conditions posed a high risk of HCN formation. Cyanide consumption was found to be pH-dependent. Thus, no bacterial growth was observed with a controlled pH of 10; on the other hand, pH 9.5 allowed up to 2.31 mg CN − L −1 O.D. −1 h −1 to be converted. The combination of a high pH and a low dissolved oxygen saturation (10%) minimized the release of HCN. This study contributes new basic knowledge about this biological treatment, which constitutes an effective alternative to available physico-chemical methods for the purification of wastewater containing cyanide or cyano-metal complexes.

Research paper thumbnail of Comparative genomic analysis of solvent extrusion pumps in Pseudomonas strains exhibiting different degrees of solvent tolerance

Extremophiles, 2003

Organic solvents are inherently toxic for microorganisms. Their effects depend not only on the na... more Organic solvents are inherently toxic for microorganisms. Their effects depend not only on the nature of the compound, but also on the intrinsic tolerance of the bacterial species and strains. Three efflux pumps belonging to the RND (resistance-nodulationcell division) family of multidrug extrusion pumps are the main factor involved in the high intrinsic tolerance to toluene of Pseudomonas putida DOT-T1E. We have analyzed the tolerance to toluene shocks [0.1% and 0.3% (v/v)] of a number of strains belonging to different species of the genus Pseudomonas upon growth in the absence and in the presence of sublethal concentrations of toluene. The strains can be grouped in three categories: (1) highly resistant strains, in which almost 100% of the cells precultured in the presence of sublethal concentrations of toluene withstood a 0.3% (v/v) toluene shock, (2) moderately resistant strains, in which only a fraction (10)4-1) of the cells withstood a 0.1% (v/v) toluene shock, but fewer than 1 in 10 7 cells survived a sudden 0.3% (v/v) toluene shock regardless of the growth conditions, and (3) sensitive strains, in which regardless of the growth conditions fewer than 10)5 cells survived a 0.1% (v/v) toluene shock. We also studied the number and type of efflux pumps in different strains in comparison with the P. putida DOT-T1E strain.

Research paper thumbnail of The cyanotrophic bacterium Pseudomonas pseudoalcaligenes CECT5344 responds to cyanide by defence mechanisms against iron deprivation, oxidative damage and nitrogen stress

Environmental Microbiology, 2007

Two-dimensional (2-D) electrophoresis approach has been used to test protein expression changes i... more Two-dimensional (2-D) electrophoresis approach has been used to test protein expression changes in response to cyanide in the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344. This is a cyanide-assimilating strain which also grows in media containing cyanide-enriched effluent from the jewellery industry. The bacterium efficiently uses this residue as the sole nitrogen source for aerobic growth under alkaline pH with negligible nitrogen losses as HCN. Cell-free extracts isolated from P. pseudoalcaligenes grown with a jewellery residue, free cyanide or ammonium chloride as nitrogen source were subjected to 2-D electrophoresis and the spot patterns were examined to determine differential protein expression. Electrophoretic plates exhibiting an average of 1000 spots showed significant differences in the expression of about 44 proteins depending on the nitrogen source. Some of these protein spots were analysed by Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Characterization of five of these proteins reveals that cyanide shock induces proteins related to iron acquisition, regulation of nitrogen assimilation pathways and oxidative stress repairing and protection.

Research paper thumbnail of Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344

Biochemical Society Transactions, 2005

Pseudomonas pseudoalcaligenes CECT5344 uses cyanide, cyanate, β-cyanoalanine, and other cyanoderi... more Pseudomonas pseudoalcaligenes CECT5344 uses cyanide, cyanate, β-cyanoalanine, and other cyanoderivatives as nitrogen sources under alkaline conditions, which prevents volatile HCN (pKa 9.2) formation. The cyanide consumed by this strain is stoichiometrically converted into ammonium. In addition, this bacterium grows with the heavy metal, cyanide-containing waste water generated by the jewellery industry, and is also a cyanide-resistant strain which induces an alternative oxidase and a siderophore-based mechanism for iron acquisition in the presence of cyanide. The detection of cyanase and β-cyanoalanine nitrilase activities in cyanide-induced cells suggests their implication in the cyanide degradation pathway.

Research paper thumbnail of Characterization of the Pseudomonas pseudoalcaligenes CECT5344 Cyanase, an Enzyme That Is Not Essential for Cyanide Assimilation

Applied and Environmental Microbiology, 2008

Cyanase catalyzes the decomposition of cyanate into CO2 and ammonium, with carbamate as an unstab... more Cyanase catalyzes the decomposition of cyanate into CO2 and ammonium, with carbamate as an unstable intermediate. The cyanase of Pseudomonas pseudoalcaligenes CECT5344 was negatively regulated by ammonium and positively regulated by cyanate, cyanide, and some cyanometallic complexes. Cyanase activity was not detected in cell extracts from cells grown with ammonium, even in the presence of cyanate. Nevertheless, a low level of cyanase activity was detected in nitrogen-starved cells. The cyn gene cluster of P. pseudoalcaligenes CECT5344 was cloned and analyzed. The cynA, cynB, and cynD genes encode an ABC-type transporter, the cynS gene codes for the cyanase, and the cynF gene encodes a novel σ54-dependent transcriptional regulator which is not present in other bacterial cyn gene clusters. The CynS protein was expressed in Escherichia coli and purified by following a simple and rapid protocol. The P. pseudoalcaligenes cyanase showed an optimal pH of 8.5°C and a temperature of 65°C. An...

Research paper thumbnail of Bacterial Degradation of Cyanide and Its Metal Complexes under Alkaline Conditions

Applied and Environmental Microbiology, 2005

A bacterial strain able to use cyanide as the sole nitrogen source under alkaline conditions has ... more A bacterial strain able to use cyanide as the sole nitrogen source under alkaline conditions has been isolated. The bacterium was classified as Pseudomonas pseudoalcaligenes by comparison of its 16S RNA gene sequence to those of existing strains and deposited in the Colección Española de Cultivos Tipo (Spanish Type Culture Collection) as strain CECT5344. Cyanide consumption is an assimilative process, since (i) bacterial growth was concomitant and proportional to cyanide degradation and (ii) the bacterium stoichiometrically converted cyanide into ammonium in the presence of l -methionine- d , l -sulfoximine, a glutamine synthetase inhibitor. The bacterium was able to grow in alkaline media, up to an initial pH of 11.5, and tolerated free cyanide in concentrations of up to 30 mM, which makes it a good candidate for the biological treatment of cyanide-contaminated residues. Both acetate and d , l -malate were suitable carbon sources for cyanotrophic growth, but no growth was detecte...

Research paper thumbnail of Survival in soil of different toluene-degrading Pseudomonas strains after solvent shock

Applied and …, 1998

We assayed the tolerance to solvents of three toluene-degrading Pseudomonas putida strains and Ps... more We assayed the tolerance to solvents of three toluene-degrading Pseudomonas putida strains and Pseudomonas mendocina KR1 in liquid and soil systems. P. putida DOT-T1 tolerated concentrations of heptane, propylbenzene, octanol, and toluene of at least 10% (vol/vol), while P. putida F1 and EEZ15 grew well in the presence of 1% (vol/vol) propylbenzene or 10% (vol/vol) heptane, but not in the presence of similar concentrations of octanol or toluene. P. mendocina KR1 grew only in the presence of heptane. All three P. putida strains were able to become established in a fluvisol soil from the Granada, Spain, area, whereas P. mendocina KR1 did not survive in this soil. The tolerance to organic solvents of all three P. putida strains was therefore assayed in soil. The addition to soil of 10% (vol/wt) heptane or 10% (vol/wt) propylbenzene did not affect the survival of the three P. putida strains. However, the addition of 10% (vol/wt) toluene led to an immediate decrease of several log units in the number of CFU per gram of soil for all of the strains, although P. putida F1 and DOT-T1 subsequently recovered. This recovery was influenced by the humidity of the soil and the incubation temperature. P. putida DOT-T1 recovered from the shock faster than P. putida F1; this allowed the former strain to become established at higher densities in polluted sites into which both strains had been introduced.

Research paper thumbnail of Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons

Journal of …, 1995

Pseudomonas putida DOT-T1 was isolated after enrichment on minimal medium with 1% (vol/vol) tolue... more Pseudomonas putida DOT-T1 was isolated after enrichment on minimal medium with 1% (vol/vol) toluene as the sole C source. The strain was able to grow in the presence of 90% (vol/vol) toluene and was tolerant to organic solvents whose log Pow (octanol/water ...

Research paper thumbnail of Indispensable or toxic? The phosphate versus arsenate debate

Research paper thumbnail of Tolerance to sudden organic solvent shocks by soil bacteria and characterization …

Environ. Sci. …

Upon a sudden addition of toluene to soil (10% vol/wt) a significant proportion (about 1%) of the... more Upon a sudden addition of toluene to soil (10% vol/wt) a significant proportion (about 1%) of the soil indigenous bacteria survived, the survival ones recolonized the soil to reach a high cell density. Two bacterial strains called MTB5 and MTB6, which use toluene as the sole ...