arash mollahosseini | University of Saskatchewan (original) (raw)

Papers by arash mollahosseini

Research paper thumbnail of Zwitterionization of common hemodialysis membranes: assessment of different immobilized structure impact on hydrophilicity and biocompatibility of poly aryl ether sulfone (PAES) and cellulose triacetate (CTA) hemodialysis membranes

Research paper thumbnail of Latest advances in zwitterionic structures modified dialysis membranes

Materials Today Chemistry, 2020

End-stage renal diseases are affecting many patients and as a result, demand to receive dialysis ... more End-stage renal diseases are affecting many patients and as a result, demand to receive dialysis service is growing annually. Morbidity and mortality rates are reported to be higher in comparison with healthy humans. The reason is reported to be the hemoincompatiblity of blood purification membranes, which hinders patients' lives. Activation of different immune systems in the body, in case of blood-membrane interaction, results in several side effects, of which cardiovascular shocks have been mentioned to be a major one. Efforts to solve this issue have resulted in different generations of dialysis membranes. Zwitterionic immobilized membranes are the latest (third) generation, which owns a higher degree of hemocompatiblity with more stability of immobilized structures. This critical review intends to cover recent efforts conducted over the zwitterionization of polymeric membrane surfaces with the goal of improving hemocompatibility. Different aspects of third-generation membranes are discussed for a better understanding of the current gap and gathering the knowledge to further develop the field. Accordingly, this critical survey provides an in-depth understanding of blood purification membranes zwitterionization for paving the way for the optimum enhancement of hemodialysis membrane hemocompatibility.

Research paper thumbnail of Novel insights in hemodialysis: Most recent theories on membrane hemocompatibility improvement

Biomedical Engineering Advances

Research paper thumbnail of A Comparative Assessment of Human Serum Proteins Interactions with Hemodialysis Clinical Membranes using Molecular Dynamics Simulation

Macromolecular Theory and Simulations

Research paper thumbnail of Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis

Journal of Membrane Science, 2019

Abstract Forward osmosis (FO) is an osmotically driven process widely studied for water desalinat... more Abstract Forward osmosis (FO) is an osmotically driven process widely studied for water desalination, wastewater treatment, and water reuse, as well as dilution and concentration of aqueous streams. However, its application is still hampered by the lack of ideal draw solutes, high-performance membranes, and fouling/biofouling. Biofouling is particularly challenging when FO is applied for seawater desalination and wastewater treatment. Over the last decade, many attempts have been made to exploit advances in materials science to obtain membranes with anti-biofouling properties to prevent or to reduce the detrimental effects of this phenomenon. In this review, we address the various approaches of membrane surface functionalization for biofouling control and mitigation. Recent developments in surface modification of thin-film composite and asymmetric membranes using surface coating, surface functionalization, and incorporation of tailored materials for biofouling control in FO are critically discussed. The future perspectives of anti-biofouling materials and FO membranes are reviewed to shed light on the future research directions for developing the true potential surface modification approach for the FO process.

Research paper thumbnail of Feasibility of Membrane Processes for the Recovery and Purification of Bio-Based Volatile Fatty Acids: A Comprehensive Review

Journal of Industrial and Engineering Chemistry, 2019

Abstract Volatile fatty acids (VFAs) can be produced from fermentation/anaerobic digestion of was... more Abstract Volatile fatty acids (VFAs) can be produced from fermentation/anaerobic digestion of wastes and are a valuable substrate for numerous applications, such as those related to the food, tanning, petrochemicals, pharmaceuticals, cosmetics, and chemicals industry. They are also inexpensive raw materials for developing alternative sources of energy. However, the separation and purification of VFAs produced from fermented wastewaters are not straightforward goals, due to the low concentration of these compounds in the fermentation broths and owing to the complexity of these mixtures. Cost-effective and sustainable technologies must be developed to recover VFAs efficiently and allow their beneficial use. In this paper, a comprehensive review of VFAs recovery/purification methods is provided, with focus on membrane-based processes. First, the VFAs production methods, application, and conventional processes (distillation, precipitation, adsorption, and extraction) for their recovery are briefly reviewed. Then, the ability of various membrane-based techniques to separate and purify VFAs are evaluated and discussed in detail. This discussion includes the processes of microfiltration/ultrafiltration, nanofiltration, reverse osmosis, forward osmosis, membrane distillation, electrodialysis, membrane contractor, and pervaporation. Extensive background and examples of applications are also provided to show the effectiveness of membrane processes. Finally, challenges and future research directions are highlighted.

Research paper thumbnail of Reactor technologies for biodiesel production and processing: A review

Progress in Energy and Combustion Science, 2019

Abstract Diesel engines are preferred over spark ignition counterparts for heavy-duty application... more Abstract Diesel engines are preferred over spark ignition counterparts for heavy-duty applications and power generation plants because of their higher efficiency, durability, and productivity. Currently, the research interests have been propelled towards renewable and sustainable diesel fuels such as biodiesel in order to address the environmental and energy security challenges associated with these energy systems. However, the most challenging issue concerning large-scale production of biodiesel is its relatively high cost over fossil-based diesel owing to high feedstock and manufacturing costs. Therefore, cost-effective and eco-friendly biodiesel production technologies should be necessarily developed and continuously improved in order to make this biofuel more competitive vs. its petroleum counterpart. Accordingly, this paper comprehensively reviews biodiesel manufacturing techniques from natural oils and fats using conventional and advanced technologies with an in-depth state-of-the-art focus on the utmost important unit, i.e., transesterification reactor. The effects of the main influential parameters on the transesterification process are first discussed in detail in order to better understand the mechanisms behind each reactor technology. Different transesterification reactors; e.g., tubular/plug-flow reactors, rotating reactors, simultaneous reaction-separation reactors, cavitational reactors, and microwave reactors are then scrutinized from the scientific and practical viewpoints. Merits and limitations of each reactor technology for biodiesel production are highlighted to guide future R&D on this topic. At the end of the paper, the sustainability aspects of biodiesel production are comprehensively discussed by emphasizing on the biorefinery concept utilizing waste-oriented oils.

Research paper thumbnail of Recent advances in thin film composites membranes for brackish groundwater treatment with critical focus on Saskatchewan water sources

Journal of Environmental Sciences, 2019

Drinking water scarcity is an ever-increasing global concern. This issue appears as a greater thr... more Drinking water scarcity is an ever-increasing global concern. This issue appears as a greater threat to the countries with no access to sea water resources or rivers, since their potential water resources are only limited to ground waters only. There are serious concerns with the treatment of ground water resources, including landfill leachates, agricultural contaminations (pesticides, herbicides, and fertilizers), and rural contaminations. Membrane separation has been proved to be the governing technology in water and wastewater treatment plants, as these methods are responsible for more than half of the market share of the world's desalination capacity. This study intends to offer a holistic view of the groundwater contamination with specific focus on Saskatchewan province in Canada, and the recent efforts in the groundwater treatment using thin film composite membrane technology. This study begins with an introduction of the general aspects of ground water and membrane separation, polluting agents, and their sources. It is followed by a discussion of Saskatchewan's groundwater status and various issues. Furthermore, the recent research that became available since 2010 is reviewed in details and the results are summarized with respect to purification efficiency. Different affecting parameters in a groundwater-thin film composite system are synthesized and an in-depth overview is presented.

Research paper thumbnail of Renewable energy management and market in Iran: A holistic review on current state and future demands

Renewable and Sustainable Energy Reviews, 2017

There are abundant renewable energy sources in Iran such as wind, solar, geothermal, biomass. How... more There are abundant renewable energy sources in Iran such as wind, solar, geothermal, biomass. However, Iran is fully dependent on fossil fuels for industrial, residential and transportation sectors. It results in the country to be in top 10 producers of greenhouse gases (GHGs) into the atmosphere. GHGs can be controlled by incorporating renewable sources to produce energy. Therefore, renewable energy resources are becoming more attractive to develop sustainable energy development in Iran. However, the transformation from traditional fossil fuel infrastructures to advanced renewable technologies needs many considerations, such as strategic and core planning. In this regard, this paper covers the current state of Iran's energy market focusing on both fossil fuels and renewable energy resources. A general review is offered over the renewable energy production status in Iran and the production potentials. Finally, in conclusion, a comparisons are made over the current state, plans and also potential opportunities of Iran over each sort of energy production.

Research paper thumbnail of Introductory Chapter: An Overview of Recent Advances in Membrane Technologies

Advances in Membrane Technologies, Mar 4, 2020

Environmental changes, global warming, and inappropriate planning are two sides of the worldwide ... more Environmental changes, global warming, and inappropriate planning are two sides of the worldwide water shortage coin [1-3]. Figure 1 shows the status of different countries based on water-stressed scenario [4]. Based on United Nations report, more than 2 billion people will experience water scarcity by 2050 [4]. All the previous projections show the vitality of drinking water production and desalination technologies. Currently, there exist two main commercial water-treatment process classes including thermal-based processes (including multistage flash distillation (MSF), vapor compression (VC), and multieffect distillation (MED)) and membrane filtration processes (including reverse osmosis (RO), nanofiltration (NF), and related energy recovery devices (ERD)). Thermal processes were more common previously. However, membrane technologies are outweighing the older processes. Main reasons for RO desalination process growth have mentioned to be rapid technical advances along with its simplicity and elegance [5-9]. Despite all advances in the field, fouling in its different types (colloidal matters, organic fouling of natural and synthetic chemicals, inorganic fouling (scaling), and biological fouling (biofouling)) is the remaining issue of industrial membrane processes [9, 10]. Various types of fouling will result in feed pressure increment and higher operational costs, more frequent requirement of chemical cleaning of the modules and shortened lifetime of the membranes. Fouling types happen simultaneously and could affect each other. This is while biofouling is identified as the critical issue as it is imposed to the membrane surface by living and dynamic microbiological cells and viruses. As the biological attachment, division of the cells and colonization on the surface occurs, the microbiological species and the exopolymeric substance produced by them, create resistance to antimicrobial treatments and the resulted biofouling starts to impose bio-corrosion and lowering the performance of the system [11]. Exposure of the membrane systems to feed's biological contamination highly depends on the environmental factors of the feed itself (nutrient content, available biological species, temperature, light, turbidity, and currents (tides and waves)) [12]. Items under feed water and microorganism classes are related to the microorganism proliferation and conditions supporting their existence. This is while main efforts over process enhancement and modification of membranes are attributed to the membrane-specific properties such as composition and surface structure-characteristics (classified under the title of membrane properties). Apparently, the issue of biofouling could own various levels of severity in different locations. Biofouling is mentioned to be responsible for 45% of the overall fouling that occurred in nanofiltration (NF) and RO plants [13-16].

Research paper thumbnail of Effects of mussel‐inspired co‐deposition of 2‐hydroxymethyl methacrylate and poly (2‐methoxyethyl acrylate) on the hydrophilicity and binding tendency of common hemodialysis membranes: Molecular dynamics simulations and molecular docking studies

Journal of Computational Chemistry

Despite advances in the field, hemoincompatibility remains a critical issue for hemodialysis (HD)... more Despite advances in the field, hemoincompatibility remains a critical issue for hemodialysis (HD) as interactions between various human blood constituents and the polymeric structure of HD membranes results in complications such as activation of immune system cascades. Adding hydrophilic polymer structures to the membranes is one modification approach that can decrease the extent of protein adsorption. This study conducted molecular dynamics (MD) simulations to understand the interactions between three human serum proteins (fibrinogen [FB], human serum albumin, and transferrin) and common HD membranes in untreated and modified forms. Poly(aryl ether sulfone) (PAES) and cellulose triacetate were used as the common dialyzer polymers, and membrane modifications were performed with 2-hydroxymethyl methacrylate (HEMA) and poly (2-methoxyethyl acrylate) (PMEA), using polydopamine-assisted co-deposition. The MD simulations were used as the framework for binding energy simulations, and molecular docking simulations were also performed to conduct molecular-level investigations between the two modifying polymers (HEMA and PMEA) and FB. Each of the three proteins acted differently with the membranes due to their unique nature and surface chemistry. The simulations show PMEA binds less intensively to FB with a higher number of hydrogen bonds, which reflects PMEA's superior performance compared to HEMA. The simulations suggest PAES membranes could be used in modified forms for blood-contact applications as they reflect the lowest binding energy to blood proteins.

Research paper thumbnail of Innovative in situ investigations using synchrotron‐based micro tomography and molecular dynamics simulation for fouling assessment in ceramic membranes for dairy and food industry

International Journal of Applied Ceramic Technology

Research paper thumbnail of Challenges and Advances in Hemodialysis Membranes

Advances in Membrane Technologies, Mar 4, 2020

Hemodialysis (HD) is a filtration vital process through which the bloods' toxins and contaminatio... more Hemodialysis (HD) is a filtration vital process through which the bloods' toxins and contaminations are removed. However, several immune system activations occur during dialysis, which can result in morbidity and mortality. The efficiency of the currently available blood purification process is hindered, on one hand, by the deficient toxins and middle molecule removal, and on the other hand, with the loss of valuable blood components (such as plasma and its constituents). This chapter offers an overview of the challenges and advances in HD membranes. It includes an introduction of the end stage renal disease, concepts of dialysis, its historical background, and the path through which the configurations and materials evolved. The interactions between membrane polymeric materials with human blood is also discussed. The aspect of material modification is one of the critical areas in HD technology as it targets to solve the most immediate and prevalent HD issue of membrane bioincompatibility. High flux dialysis (HFD) and hemofiltration (HF) are introduced and discussed. This class of membranes was introduced to solve middle molecule (such as β2-microglobulin) related challenges. This chapter highlights the question of why the issue of incompatible materials still exists along with current membrane modifications.

Research paper thumbnail of Molecular dynamics simulation for membrane separation and porous materials: A current state of art review

Journal of Molecular Graphics and Modelling

Research paper thumbnail of A case study of poly (aryl ether sulfone) hemodialysis membrane interactions with human blood: Molecular dynamics simulation and experimental analyses

Computer Methods and Programs in Biomedicine

Research paper thumbnail of A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes

Research paper thumbnail of Renewable energy-driven desalination opportunities – A case study

Journal of Environmental Management

Research paper thumbnail of A critical review of recent advances in hemodialysis membranes hemocompatibility and guidelines for future development

Materials Chemistry and Physics

Research paper thumbnail of Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis

Journal of Membrane Science

Research paper thumbnail of Waste polymers recycling in biodiesel as a strategy to simultaneously enhance fuel properties and recycle the waste: realistic simulation and economical assessment approach

Research paper thumbnail of Zwitterionization of common hemodialysis membranes: assessment of different immobilized structure impact on hydrophilicity and biocompatibility of poly aryl ether sulfone (PAES) and cellulose triacetate (CTA) hemodialysis membranes

Research paper thumbnail of Latest advances in zwitterionic structures modified dialysis membranes

Materials Today Chemistry, 2020

End-stage renal diseases are affecting many patients and as a result, demand to receive dialysis ... more End-stage renal diseases are affecting many patients and as a result, demand to receive dialysis service is growing annually. Morbidity and mortality rates are reported to be higher in comparison with healthy humans. The reason is reported to be the hemoincompatiblity of blood purification membranes, which hinders patients' lives. Activation of different immune systems in the body, in case of blood-membrane interaction, results in several side effects, of which cardiovascular shocks have been mentioned to be a major one. Efforts to solve this issue have resulted in different generations of dialysis membranes. Zwitterionic immobilized membranes are the latest (third) generation, which owns a higher degree of hemocompatiblity with more stability of immobilized structures. This critical review intends to cover recent efforts conducted over the zwitterionization of polymeric membrane surfaces with the goal of improving hemocompatibility. Different aspects of third-generation membranes are discussed for a better understanding of the current gap and gathering the knowledge to further develop the field. Accordingly, this critical survey provides an in-depth understanding of blood purification membranes zwitterionization for paving the way for the optimum enhancement of hemodialysis membrane hemocompatibility.

Research paper thumbnail of Novel insights in hemodialysis: Most recent theories on membrane hemocompatibility improvement

Biomedical Engineering Advances

Research paper thumbnail of A Comparative Assessment of Human Serum Proteins Interactions with Hemodialysis Clinical Membranes using Molecular Dynamics Simulation

Macromolecular Theory and Simulations

Research paper thumbnail of Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis

Journal of Membrane Science, 2019

Abstract Forward osmosis (FO) is an osmotically driven process widely studied for water desalinat... more Abstract Forward osmosis (FO) is an osmotically driven process widely studied for water desalination, wastewater treatment, and water reuse, as well as dilution and concentration of aqueous streams. However, its application is still hampered by the lack of ideal draw solutes, high-performance membranes, and fouling/biofouling. Biofouling is particularly challenging when FO is applied for seawater desalination and wastewater treatment. Over the last decade, many attempts have been made to exploit advances in materials science to obtain membranes with anti-biofouling properties to prevent or to reduce the detrimental effects of this phenomenon. In this review, we address the various approaches of membrane surface functionalization for biofouling control and mitigation. Recent developments in surface modification of thin-film composite and asymmetric membranes using surface coating, surface functionalization, and incorporation of tailored materials for biofouling control in FO are critically discussed. The future perspectives of anti-biofouling materials and FO membranes are reviewed to shed light on the future research directions for developing the true potential surface modification approach for the FO process.

Research paper thumbnail of Feasibility of Membrane Processes for the Recovery and Purification of Bio-Based Volatile Fatty Acids: A Comprehensive Review

Journal of Industrial and Engineering Chemistry, 2019

Abstract Volatile fatty acids (VFAs) can be produced from fermentation/anaerobic digestion of was... more Abstract Volatile fatty acids (VFAs) can be produced from fermentation/anaerobic digestion of wastes and are a valuable substrate for numerous applications, such as those related to the food, tanning, petrochemicals, pharmaceuticals, cosmetics, and chemicals industry. They are also inexpensive raw materials for developing alternative sources of energy. However, the separation and purification of VFAs produced from fermented wastewaters are not straightforward goals, due to the low concentration of these compounds in the fermentation broths and owing to the complexity of these mixtures. Cost-effective and sustainable technologies must be developed to recover VFAs efficiently and allow their beneficial use. In this paper, a comprehensive review of VFAs recovery/purification methods is provided, with focus on membrane-based processes. First, the VFAs production methods, application, and conventional processes (distillation, precipitation, adsorption, and extraction) for their recovery are briefly reviewed. Then, the ability of various membrane-based techniques to separate and purify VFAs are evaluated and discussed in detail. This discussion includes the processes of microfiltration/ultrafiltration, nanofiltration, reverse osmosis, forward osmosis, membrane distillation, electrodialysis, membrane contractor, and pervaporation. Extensive background and examples of applications are also provided to show the effectiveness of membrane processes. Finally, challenges and future research directions are highlighted.

Research paper thumbnail of Reactor technologies for biodiesel production and processing: A review

Progress in Energy and Combustion Science, 2019

Abstract Diesel engines are preferred over spark ignition counterparts for heavy-duty application... more Abstract Diesel engines are preferred over spark ignition counterparts for heavy-duty applications and power generation plants because of their higher efficiency, durability, and productivity. Currently, the research interests have been propelled towards renewable and sustainable diesel fuels such as biodiesel in order to address the environmental and energy security challenges associated with these energy systems. However, the most challenging issue concerning large-scale production of biodiesel is its relatively high cost over fossil-based diesel owing to high feedstock and manufacturing costs. Therefore, cost-effective and eco-friendly biodiesel production technologies should be necessarily developed and continuously improved in order to make this biofuel more competitive vs. its petroleum counterpart. Accordingly, this paper comprehensively reviews biodiesel manufacturing techniques from natural oils and fats using conventional and advanced technologies with an in-depth state-of-the-art focus on the utmost important unit, i.e., transesterification reactor. The effects of the main influential parameters on the transesterification process are first discussed in detail in order to better understand the mechanisms behind each reactor technology. Different transesterification reactors; e.g., tubular/plug-flow reactors, rotating reactors, simultaneous reaction-separation reactors, cavitational reactors, and microwave reactors are then scrutinized from the scientific and practical viewpoints. Merits and limitations of each reactor technology for biodiesel production are highlighted to guide future R&D on this topic. At the end of the paper, the sustainability aspects of biodiesel production are comprehensively discussed by emphasizing on the biorefinery concept utilizing waste-oriented oils.

Research paper thumbnail of Recent advances in thin film composites membranes for brackish groundwater treatment with critical focus on Saskatchewan water sources

Journal of Environmental Sciences, 2019

Drinking water scarcity is an ever-increasing global concern. This issue appears as a greater thr... more Drinking water scarcity is an ever-increasing global concern. This issue appears as a greater threat to the countries with no access to sea water resources or rivers, since their potential water resources are only limited to ground waters only. There are serious concerns with the treatment of ground water resources, including landfill leachates, agricultural contaminations (pesticides, herbicides, and fertilizers), and rural contaminations. Membrane separation has been proved to be the governing technology in water and wastewater treatment plants, as these methods are responsible for more than half of the market share of the world's desalination capacity. This study intends to offer a holistic view of the groundwater contamination with specific focus on Saskatchewan province in Canada, and the recent efforts in the groundwater treatment using thin film composite membrane technology. This study begins with an introduction of the general aspects of ground water and membrane separation, polluting agents, and their sources. It is followed by a discussion of Saskatchewan's groundwater status and various issues. Furthermore, the recent research that became available since 2010 is reviewed in details and the results are summarized with respect to purification efficiency. Different affecting parameters in a groundwater-thin film composite system are synthesized and an in-depth overview is presented.

Research paper thumbnail of Renewable energy management and market in Iran: A holistic review on current state and future demands

Renewable and Sustainable Energy Reviews, 2017

There are abundant renewable energy sources in Iran such as wind, solar, geothermal, biomass. How... more There are abundant renewable energy sources in Iran such as wind, solar, geothermal, biomass. However, Iran is fully dependent on fossil fuels for industrial, residential and transportation sectors. It results in the country to be in top 10 producers of greenhouse gases (GHGs) into the atmosphere. GHGs can be controlled by incorporating renewable sources to produce energy. Therefore, renewable energy resources are becoming more attractive to develop sustainable energy development in Iran. However, the transformation from traditional fossil fuel infrastructures to advanced renewable technologies needs many considerations, such as strategic and core planning. In this regard, this paper covers the current state of Iran's energy market focusing on both fossil fuels and renewable energy resources. A general review is offered over the renewable energy production status in Iran and the production potentials. Finally, in conclusion, a comparisons are made over the current state, plans and also potential opportunities of Iran over each sort of energy production.

Research paper thumbnail of Introductory Chapter: An Overview of Recent Advances in Membrane Technologies

Advances in Membrane Technologies, Mar 4, 2020

Environmental changes, global warming, and inappropriate planning are two sides of the worldwide ... more Environmental changes, global warming, and inappropriate planning are two sides of the worldwide water shortage coin [1-3]. Figure 1 shows the status of different countries based on water-stressed scenario [4]. Based on United Nations report, more than 2 billion people will experience water scarcity by 2050 [4]. All the previous projections show the vitality of drinking water production and desalination technologies. Currently, there exist two main commercial water-treatment process classes including thermal-based processes (including multistage flash distillation (MSF), vapor compression (VC), and multieffect distillation (MED)) and membrane filtration processes (including reverse osmosis (RO), nanofiltration (NF), and related energy recovery devices (ERD)). Thermal processes were more common previously. However, membrane technologies are outweighing the older processes. Main reasons for RO desalination process growth have mentioned to be rapid technical advances along with its simplicity and elegance [5-9]. Despite all advances in the field, fouling in its different types (colloidal matters, organic fouling of natural and synthetic chemicals, inorganic fouling (scaling), and biological fouling (biofouling)) is the remaining issue of industrial membrane processes [9, 10]. Various types of fouling will result in feed pressure increment and higher operational costs, more frequent requirement of chemical cleaning of the modules and shortened lifetime of the membranes. Fouling types happen simultaneously and could affect each other. This is while biofouling is identified as the critical issue as it is imposed to the membrane surface by living and dynamic microbiological cells and viruses. As the biological attachment, division of the cells and colonization on the surface occurs, the microbiological species and the exopolymeric substance produced by them, create resistance to antimicrobial treatments and the resulted biofouling starts to impose bio-corrosion and lowering the performance of the system [11]. Exposure of the membrane systems to feed's biological contamination highly depends on the environmental factors of the feed itself (nutrient content, available biological species, temperature, light, turbidity, and currents (tides and waves)) [12]. Items under feed water and microorganism classes are related to the microorganism proliferation and conditions supporting their existence. This is while main efforts over process enhancement and modification of membranes are attributed to the membrane-specific properties such as composition and surface structure-characteristics (classified under the title of membrane properties). Apparently, the issue of biofouling could own various levels of severity in different locations. Biofouling is mentioned to be responsible for 45% of the overall fouling that occurred in nanofiltration (NF) and RO plants [13-16].

Research paper thumbnail of Effects of mussel‐inspired co‐deposition of 2‐hydroxymethyl methacrylate and poly (2‐methoxyethyl acrylate) on the hydrophilicity and binding tendency of common hemodialysis membranes: Molecular dynamics simulations and molecular docking studies

Journal of Computational Chemistry

Despite advances in the field, hemoincompatibility remains a critical issue for hemodialysis (HD)... more Despite advances in the field, hemoincompatibility remains a critical issue for hemodialysis (HD) as interactions between various human blood constituents and the polymeric structure of HD membranes results in complications such as activation of immune system cascades. Adding hydrophilic polymer structures to the membranes is one modification approach that can decrease the extent of protein adsorption. This study conducted molecular dynamics (MD) simulations to understand the interactions between three human serum proteins (fibrinogen [FB], human serum albumin, and transferrin) and common HD membranes in untreated and modified forms. Poly(aryl ether sulfone) (PAES) and cellulose triacetate were used as the common dialyzer polymers, and membrane modifications were performed with 2-hydroxymethyl methacrylate (HEMA) and poly (2-methoxyethyl acrylate) (PMEA), using polydopamine-assisted co-deposition. The MD simulations were used as the framework for binding energy simulations, and molecular docking simulations were also performed to conduct molecular-level investigations between the two modifying polymers (HEMA and PMEA) and FB. Each of the three proteins acted differently with the membranes due to their unique nature and surface chemistry. The simulations show PMEA binds less intensively to FB with a higher number of hydrogen bonds, which reflects PMEA's superior performance compared to HEMA. The simulations suggest PAES membranes could be used in modified forms for blood-contact applications as they reflect the lowest binding energy to blood proteins.

Research paper thumbnail of Innovative in situ investigations using synchrotron‐based micro tomography and molecular dynamics simulation for fouling assessment in ceramic membranes for dairy and food industry

International Journal of Applied Ceramic Technology

Research paper thumbnail of Challenges and Advances in Hemodialysis Membranes

Advances in Membrane Technologies, Mar 4, 2020

Hemodialysis (HD) is a filtration vital process through which the bloods' toxins and contaminatio... more Hemodialysis (HD) is a filtration vital process through which the bloods' toxins and contaminations are removed. However, several immune system activations occur during dialysis, which can result in morbidity and mortality. The efficiency of the currently available blood purification process is hindered, on one hand, by the deficient toxins and middle molecule removal, and on the other hand, with the loss of valuable blood components (such as plasma and its constituents). This chapter offers an overview of the challenges and advances in HD membranes. It includes an introduction of the end stage renal disease, concepts of dialysis, its historical background, and the path through which the configurations and materials evolved. The interactions between membrane polymeric materials with human blood is also discussed. The aspect of material modification is one of the critical areas in HD technology as it targets to solve the most immediate and prevalent HD issue of membrane bioincompatibility. High flux dialysis (HFD) and hemofiltration (HF) are introduced and discussed. This class of membranes was introduced to solve middle molecule (such as β2-microglobulin) related challenges. This chapter highlights the question of why the issue of incompatible materials still exists along with current membrane modifications.

Research paper thumbnail of Molecular dynamics simulation for membrane separation and porous materials: A current state of art review

Journal of Molecular Graphics and Modelling

Research paper thumbnail of A case study of poly (aryl ether sulfone) hemodialysis membrane interactions with human blood: Molecular dynamics simulation and experimental analyses

Computer Methods and Programs in Biomedicine

Research paper thumbnail of A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes

Research paper thumbnail of Renewable energy-driven desalination opportunities – A case study

Journal of Environmental Management

Research paper thumbnail of A critical review of recent advances in hemodialysis membranes hemocompatibility and guidelines for future development

Materials Chemistry and Physics

Research paper thumbnail of Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis

Journal of Membrane Science

Research paper thumbnail of Waste polymers recycling in biodiesel as a strategy to simultaneously enhance fuel properties and recycle the waste: realistic simulation and economical assessment approach