Leena-Maija Vanha-aho | Tampere University (original) (raw)

Uploads

Papers by Leena-Maija Vanha-aho

Research paper thumbnail of Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection

PLOS Pathogens, 2016

Cellular immune responses require the generation and recruitment of diverse blood cell types that... more Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail.

Research paper thumbnail of Modeling Tuberculosis in <em>Mycobacterium marinum</em> Infected Adult Zebrafish

Journal of Visualized Experiments, Oct 8, 2018

Research paper thumbnail of Cytokines in Drosophila immunity

Immunology Letters, 2016

Cytokines are a large and diverse group of small proteins that can affect many biological process... more Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity.

Research paper thumbnail of Imd Pathway Drosophila Pirk Is a Negative Regulator of the

Research paper thumbnail of Edin Expression in the Fat Body Is Required in the Defense Against Parasitic Wasps in Drosophila melanogaster

PLOS Pathogens, 2015

The cellular immune response against parasitoid wasps in Drosophila involves the activation, mobi... more The cellular immune response against parasitoid wasps in Drosophila involves the activation, mobilization, proliferation and differentiation of different blood cell types. Here, we have assessed the role of Edin (elevated during infection) in the immune response against the parasitoid wasp Leptopilina boulardi in Drosophila melanogaster larvae. The expression of edin was induced within hours after a wasp infection in larval fat bodies. Using tissuespecific RNAi, we show that Edin is an important determinant of the encapsulation response. Although edin expression in the fat body was required for the larvae to mount a normal encapsulation response, it was dispensable in hemocytes. Edin expression in the fat body was not required for lamellocyte differentiation, but it was needed for the increase in plasmatocyte numbers and for the release of sessile hemocytes into the hemolymph. We conclude that edin expression in the fat body affects the outcome of a wasp infection by regulating the increase of plasmatocyte numbers and the mobilization of sessile hemocytes in Drosophila larvae.

Research paper thumbnail of Control of Drosophila blood cell activation via Toll signaling in the fat body

PloS one, 2014

The Toll signaling pathway, first discovered in Drosophila, has a well-established role in immune... more The Toll signaling pathway, first discovered in Drosophila, has a well-established role in immune responses in insects as well as in mammals. In Drosophila, the Toll-dependent induction of antimicrobial peptide production has been intensely studied as a model for innate immune responses in general. Besides this humoral immune response, Toll signaling is also known to activate blood cells in a reaction that is similar to the cellular immune response to parasite infections, but the mechanisms of this response are poorly understood. Here we have studied this response in detail, and found that Toll signaling in several different tissues can activate a cellular immune defense, and that this response does not require Toll signaling in the blood cells themselves. Like in the humoral immune response, we show that Toll signaling in the fat body (analogous to the liver in vertebrates) is of major importance in the Toll-dependent activation of blood cells. However, this Toll-dependent mechanis...

Research paper thumbnail of Eye transformer is a negative regulator of Drosophila JAK/STAT signaling

The FASEB Journal, 2010

JAK/STAT signaling pathway is evolutionarily conserved and tightly regulated. We carried out a re... more JAK/STAT signaling pathway is evolutionarily conserved and tightly regulated. We carried out a reporter-based genome-wide RNAi in vitro screen to identify genes that regulate Drosophila JAK/STAT pathway and found 5 novel regulators. Of these, CG14225 is a negative regulator structurally related to the Drosophila JAK/STAT pathway receptor Domeless, especially in the extracellular domain, and to the mammalian IL-6 receptor and the signal transducer gp130.

Research paper thumbnail of Functional Characterization of the Infection-Inducible Peptide Edin in Drosophila melanogaster

PLoS ONE, 2012

Drosophila is a well-established model organism for studying innate immunity because of its high ... more Drosophila is a well-established model organism for studying innate immunity because of its high resistance against microbial infections and lack of adaptive immunity. In addition, the immune signaling cascades found in Drosophila are evolutionarily conserved. Upon infection, activation of the immune signaling pathways, Toll and Imd, leads to the expression of multiple immune response genes, such as the antimicrobial peptides (AMPs). Previously, we identified an uncharacterized gene edin among the genes, which were strongly induced upon stimulation with Escherichia coli in Drosophila S2 cells. Edin has been associated with resistance against Listeria monocytogenes, but its role in Drosophila immunity remains elusive. In this study, we examined the role of Edin in the immune response of Drosophila both in vitro and in vivo. We report that edin expression is dependent on the Imd-pathway NF-kB transcription factor Relish and that it is expressed upon infection both in vitro and in vivo. Edin encodes a pro-protein, which is further processed in S2 cells. In our experiments, Edin did not bind microbes, nor did it possess antimicrobial activity to tested microbial strains in vitro or in vivo. Furthermore, edin RNAi did not significantly affect the expression of AMPs in vitro or in vivo. However, edin RNAi flies showed modestly impaired resistance to E. faecalis infection. We conclude that Edin has no potent antimicrobial properties but it appears to be important for E. faecalis infection via an uncharacterized mechanism. Further studies are still required to elucidate the exact role of Edin in the Drosophila immune response. Citation: Vanha-aho L-M, Kleino A, Kaustio M, Ulvila J, Wilke B, et al. (2012) Functional Characterization of the Infection-Inducible Peptide Edin in Drosophila melanogaster. PLoS ONE 7(5): e37153.

Research paper thumbnail of Cofilin regulator 14-3-3  is an evolutionarily conserved protein required for phagocytosis and microbial resistance

Journal of Leukocyte Biology, 2011

Research paper thumbnail of Pirk Is a Negative Regulator of the Drosophila Imd Pathway

The Journal of Immunology, 2008

NF-B transcription factors are involved in evolutionarily conserved signaling pathways controllin... more NF-B transcription factors are involved in evolutionarily conserved signaling pathways controlling multiple cellular processes including apoptosis and immune and inflammatory responses. Immune response of the fruit fly Drosophila melanogaster to Gram-negative bacteria is primarily mediated via the Imd (immune deficiency) pathway, which closely resembles the mammalian TNFR signaling pathway. Instead of cytokines, the main outcome of Imd signaling is the production of antimicrobial peptides. The pathway activity is delicately regulated. Although many of the Imd pathway components are known, the mechanisms of negative regulation are more elusive. In this study we report that a previously uncharacterized gene, pirk, is highly induced upon Gramnegative bacterial infection in Drosophila in vitro and in vivo. pirk encodes a cytoplasmic protein that coimmunoprecipitates with Imd and the cytoplasmic tail of peptidoglycan recognition protein LC (PGRP-LC). RNA interference-mediated down-regulation of Pirk caused Imd pathway hyperactivation upon infection with Gram-negative bacteria, while overexpression of pirk reduced the Imd pathway response both in vitro and in vivo. Furthermore, pirk-overexpressing flies were more susceptible to Gramnegative bacterial infection than wild-type flies. We conclude that Pirk is a negative regulator of the Imd pathway.

Research paper thumbnail of Drosophila phagocytosis - still many unknowns under the surface

APMIS, 2011

In mammals, phagocytosis coordinates host defence on two levels: It acts both as an effector of t... more In mammals, phagocytosis coordinates host defence on two levels: It acts both as an effector of the innate immunity, as well as an initiator of the adaptive immunity. The fruit fly Drosophila melanogaster (D. melanogaster) lacks the adaptive immune response, and the role of Drosophila plasmatocytes, cells that resemble phagocytosing mammalian macrophages, is limited to innate immune responses. During the past years, several studies have shed light on the role of phagocytosis in the Drosophila host defence. At least in some infection models, the systemic production of potent antimicrobial peptides (AMPs) does not completely compensate for the need for cellular immune responses. As a model, Drosophila offers powerful tools for studying phagocytosis including, large-scale RNA interference (RNAi) based in vitro screens that can be combined with classical Drosophila genetics. These kinds of approaches have led to important discoveries related especially to microbial recognition by Drosophila plasmatocytes. Events following initial recognition, however, have remained more elusive. This review summarizes the current knowledge on Drosophila phagocytosis focusing on the most recent advancements in the field, and highlighting the benefits the Drosophila system has to offer for research on phagocytosis.

Research paper thumbnail of Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection

PLOS Pathogens, 2016

Cellular immune responses require the generation and recruitment of diverse blood cell types that... more Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail.

Research paper thumbnail of Modeling Tuberculosis in <em>Mycobacterium marinum</em> Infected Adult Zebrafish

Journal of Visualized Experiments, Oct 8, 2018

Research paper thumbnail of Cytokines in Drosophila immunity

Immunology Letters, 2016

Cytokines are a large and diverse group of small proteins that can affect many biological process... more Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity.

Research paper thumbnail of Imd Pathway Drosophila Pirk Is a Negative Regulator of the

Research paper thumbnail of Edin Expression in the Fat Body Is Required in the Defense Against Parasitic Wasps in Drosophila melanogaster

PLOS Pathogens, 2015

The cellular immune response against parasitoid wasps in Drosophila involves the activation, mobi... more The cellular immune response against parasitoid wasps in Drosophila involves the activation, mobilization, proliferation and differentiation of different blood cell types. Here, we have assessed the role of Edin (elevated during infection) in the immune response against the parasitoid wasp Leptopilina boulardi in Drosophila melanogaster larvae. The expression of edin was induced within hours after a wasp infection in larval fat bodies. Using tissuespecific RNAi, we show that Edin is an important determinant of the encapsulation response. Although edin expression in the fat body was required for the larvae to mount a normal encapsulation response, it was dispensable in hemocytes. Edin expression in the fat body was not required for lamellocyte differentiation, but it was needed for the increase in plasmatocyte numbers and for the release of sessile hemocytes into the hemolymph. We conclude that edin expression in the fat body affects the outcome of a wasp infection by regulating the increase of plasmatocyte numbers and the mobilization of sessile hemocytes in Drosophila larvae.

Research paper thumbnail of Control of Drosophila blood cell activation via Toll signaling in the fat body

PloS one, 2014

The Toll signaling pathway, first discovered in Drosophila, has a well-established role in immune... more The Toll signaling pathway, first discovered in Drosophila, has a well-established role in immune responses in insects as well as in mammals. In Drosophila, the Toll-dependent induction of antimicrobial peptide production has been intensely studied as a model for innate immune responses in general. Besides this humoral immune response, Toll signaling is also known to activate blood cells in a reaction that is similar to the cellular immune response to parasite infections, but the mechanisms of this response are poorly understood. Here we have studied this response in detail, and found that Toll signaling in several different tissues can activate a cellular immune defense, and that this response does not require Toll signaling in the blood cells themselves. Like in the humoral immune response, we show that Toll signaling in the fat body (analogous to the liver in vertebrates) is of major importance in the Toll-dependent activation of blood cells. However, this Toll-dependent mechanis...

Research paper thumbnail of Eye transformer is a negative regulator of Drosophila JAK/STAT signaling

The FASEB Journal, 2010

JAK/STAT signaling pathway is evolutionarily conserved and tightly regulated. We carried out a re... more JAK/STAT signaling pathway is evolutionarily conserved and tightly regulated. We carried out a reporter-based genome-wide RNAi in vitro screen to identify genes that regulate Drosophila JAK/STAT pathway and found 5 novel regulators. Of these, CG14225 is a negative regulator structurally related to the Drosophila JAK/STAT pathway receptor Domeless, especially in the extracellular domain, and to the mammalian IL-6 receptor and the signal transducer gp130.

Research paper thumbnail of Functional Characterization of the Infection-Inducible Peptide Edin in Drosophila melanogaster

PLoS ONE, 2012

Drosophila is a well-established model organism for studying innate immunity because of its high ... more Drosophila is a well-established model organism for studying innate immunity because of its high resistance against microbial infections and lack of adaptive immunity. In addition, the immune signaling cascades found in Drosophila are evolutionarily conserved. Upon infection, activation of the immune signaling pathways, Toll and Imd, leads to the expression of multiple immune response genes, such as the antimicrobial peptides (AMPs). Previously, we identified an uncharacterized gene edin among the genes, which were strongly induced upon stimulation with Escherichia coli in Drosophila S2 cells. Edin has been associated with resistance against Listeria monocytogenes, but its role in Drosophila immunity remains elusive. In this study, we examined the role of Edin in the immune response of Drosophila both in vitro and in vivo. We report that edin expression is dependent on the Imd-pathway NF-kB transcription factor Relish and that it is expressed upon infection both in vitro and in vivo. Edin encodes a pro-protein, which is further processed in S2 cells. In our experiments, Edin did not bind microbes, nor did it possess antimicrobial activity to tested microbial strains in vitro or in vivo. Furthermore, edin RNAi did not significantly affect the expression of AMPs in vitro or in vivo. However, edin RNAi flies showed modestly impaired resistance to E. faecalis infection. We conclude that Edin has no potent antimicrobial properties but it appears to be important for E. faecalis infection via an uncharacterized mechanism. Further studies are still required to elucidate the exact role of Edin in the Drosophila immune response. Citation: Vanha-aho L-M, Kleino A, Kaustio M, Ulvila J, Wilke B, et al. (2012) Functional Characterization of the Infection-Inducible Peptide Edin in Drosophila melanogaster. PLoS ONE 7(5): e37153.

Research paper thumbnail of Cofilin regulator 14-3-3  is an evolutionarily conserved protein required for phagocytosis and microbial resistance

Journal of Leukocyte Biology, 2011

Research paper thumbnail of Pirk Is a Negative Regulator of the Drosophila Imd Pathway

The Journal of Immunology, 2008

NF-B transcription factors are involved in evolutionarily conserved signaling pathways controllin... more NF-B transcription factors are involved in evolutionarily conserved signaling pathways controlling multiple cellular processes including apoptosis and immune and inflammatory responses. Immune response of the fruit fly Drosophila melanogaster to Gram-negative bacteria is primarily mediated via the Imd (immune deficiency) pathway, which closely resembles the mammalian TNFR signaling pathway. Instead of cytokines, the main outcome of Imd signaling is the production of antimicrobial peptides. The pathway activity is delicately regulated. Although many of the Imd pathway components are known, the mechanisms of negative regulation are more elusive. In this study we report that a previously uncharacterized gene, pirk, is highly induced upon Gramnegative bacterial infection in Drosophila in vitro and in vivo. pirk encodes a cytoplasmic protein that coimmunoprecipitates with Imd and the cytoplasmic tail of peptidoglycan recognition protein LC (PGRP-LC). RNA interference-mediated down-regulation of Pirk caused Imd pathway hyperactivation upon infection with Gram-negative bacteria, while overexpression of pirk reduced the Imd pathway response both in vitro and in vivo. Furthermore, pirk-overexpressing flies were more susceptible to Gramnegative bacterial infection than wild-type flies. We conclude that Pirk is a negative regulator of the Imd pathway.

Research paper thumbnail of Drosophila phagocytosis - still many unknowns under the surface

APMIS, 2011

In mammals, phagocytosis coordinates host defence on two levels: It acts both as an effector of t... more In mammals, phagocytosis coordinates host defence on two levels: It acts both as an effector of the innate immunity, as well as an initiator of the adaptive immunity. The fruit fly Drosophila melanogaster (D. melanogaster) lacks the adaptive immune response, and the role of Drosophila plasmatocytes, cells that resemble phagocytosing mammalian macrophages, is limited to innate immune responses. During the past years, several studies have shed light on the role of phagocytosis in the Drosophila host defence. At least in some infection models, the systemic production of potent antimicrobial peptides (AMPs) does not completely compensate for the need for cellular immune responses. As a model, Drosophila offers powerful tools for studying phagocytosis including, large-scale RNA interference (RNAi) based in vitro screens that can be combined with classical Drosophila genetics. These kinds of approaches have led to important discoveries related especially to microbial recognition by Drosophila plasmatocytes. Events following initial recognition, however, have remained more elusive. This review summarizes the current knowledge on Drosophila phagocytosis focusing on the most recent advancements in the field, and highlighting the benefits the Drosophila system has to offer for research on phagocytosis.