HY W | The University of Texas at Austin (original) (raw)

Address: Houston, Texas, United States

less

Uploads

Papers by HY W

Research paper thumbnail of Non Darcy Flow in Shale Nanopores Do We Have a Final Answer

Many shale gas and ultra-low permeability tight gas reservoirs can have matrix permeability value... more Many shale gas and ultra-low permeability tight gas reservoirs can have matrix permeability values in the range of tens to hundreds of nanodarcies. The ultra-fine pore structure of these rocks can cause violation of the basic assumptions behind usage of Darcy's law. Depending on a combination of P-T conditions, pore structure and gas properties, non-Darcy flow mechanisms such as Knudsen diffusion and/or gas slippage effects could be important. Quantifying these effects is critical for correcting laboratory permeability measurements to obtain true (intrinsic) matrix permeability; several authors have also noted that corrections for these effects may also be important when analyzing field data. In order to make corrections for non-Darcy flow, numerous authors have quantified these effects as an apparent permeability that changes as a function of Knudsen number or gas pressure. There are now many correlations available for quantifying apparent permeability changes, but it is not known how much impact they really have on the long term production performance of shale gas wells.

Research paper thumbnail of Non Darcy Flow in Shale Nanopores Do We Have a Final Answer

Many shale gas and ultra-low permeability tight gas reservoirs can have matrix permeability value... more Many shale gas and ultra-low permeability tight gas reservoirs can have matrix permeability values in the range of tens to hundreds of nanodarcies. The ultra-fine pore structure of these rocks can cause violation of the basic assumptions behind usage of Darcy's law. Depending on a combination of P-T conditions, pore structure and gas properties, non-Darcy flow mechanisms such as Knudsen diffusion and/or gas slippage effects could be important. Quantifying these effects is critical for correcting laboratory permeability measurements to obtain true (intrinsic) matrix permeability; several authors have also noted that corrections for these effects may also be important when analyzing field data. In order to make corrections for non-Darcy flow, numerous authors have quantified these effects as an apparent permeability that changes as a function of Knudsen number or gas pressure. There are now many correlations available for quantifying apparent permeability changes, but it is not known how much impact they really have on the long term production performance of shale gas wells.

Log In