Natalie Henson | University of Texas, Medical Branch at Galveston (original) (raw)

Uploads

Papers by Natalie Henson

Research paper thumbnail of Altering the Trajectory of Synucleinopathies by Targeting Downstream Toxicity of Tau Oligomers

Alzheimer's & Dementia, 2016

Research paper thumbnail of Tau oligomers mediate α-synuclein toxicity and can be targeted by immunotherapy

Molecular Neurodegeneration

Background: We have evaluated the efficacy of targeting the toxic, oligomeric form of tau protein... more Background: We have evaluated the efficacy of targeting the toxic, oligomeric form of tau protein by passive immunotherapy in a mouse model of synucleinopathy. Parkinson's disease and Lewy body dementia are two of the most common neurodegenerative disorders and are primarily characterized by the accumulation of α-synuclein in Lewy bodies. However, evidence shows that smaller, oligomeric aggregates are likely the most toxic form of the protein. Moreover, a large body of research suggests that α-synuclein interacts with tau in disease and may act in a synergistic mechanism, implicating tau oligomers as a potential therapeutic target. Methods: We treated seven-month-old mice overexpressing mutated α-synuclein (A53T mice) with tau oligomerspecific monoclonal antibody (TOMA) and a control antibody and assessed both behavioral and pathological phenotypes. Results: We found that A53T mice treated with TOMA were protected from cognitive and motor deficits two weeks after a single injection. Levels of toxic tau oligomers were specifically decreased in the brains of TOMA-treated mice. Tau oligomer depletion also protected against dopamine and synaptic protein loss. Conclusion: These results indicate that targeting tau oligomers is beneficial for a mouse model of synucleinopathy and may be a viable therapeutic strategy for treating diseases in which tau and α-synuclein have a synergistic toxicity.

Research paper thumbnail of Altering the Trajectory of Synucleinopathies by Targeting Downstream Toxicity of Tau Oligomers

Alzheimer's & Dementia, 2016

Research paper thumbnail of Tau oligomers mediate α-synuclein toxicity and can be targeted by immunotherapy

Molecular Neurodegeneration

Background: We have evaluated the efficacy of targeting the toxic, oligomeric form of tau protein... more Background: We have evaluated the efficacy of targeting the toxic, oligomeric form of tau protein by passive immunotherapy in a mouse model of synucleinopathy. Parkinson's disease and Lewy body dementia are two of the most common neurodegenerative disorders and are primarily characterized by the accumulation of α-synuclein in Lewy bodies. However, evidence shows that smaller, oligomeric aggregates are likely the most toxic form of the protein. Moreover, a large body of research suggests that α-synuclein interacts with tau in disease and may act in a synergistic mechanism, implicating tau oligomers as a potential therapeutic target. Methods: We treated seven-month-old mice overexpressing mutated α-synuclein (A53T mice) with tau oligomerspecific monoclonal antibody (TOMA) and a control antibody and assessed both behavioral and pathological phenotypes. Results: We found that A53T mice treated with TOMA were protected from cognitive and motor deficits two weeks after a single injection. Levels of toxic tau oligomers were specifically decreased in the brains of TOMA-treated mice. Tau oligomer depletion also protected against dopamine and synaptic protein loss. Conclusion: These results indicate that targeting tau oligomers is beneficial for a mouse model of synucleinopathy and may be a viable therapeutic strategy for treating diseases in which tau and α-synuclein have a synergistic toxicity.

Log In