R. Masereeuw | Utrecht University (original) (raw)

Papers by R. Masereeuw

Research paper thumbnail of Iron metabolism in the pathogenesis of iron-induced kidney injury

Nature reviews. Nephrology, 2013

In the past 8 years, there has been renewed interest in the role of iron in both acute kidney inj... more In the past 8 years, there has been renewed interest in the role of iron in both acute kidney injury (AKI) and chronic kidney disease (CKD). In patients with kidney diseases, renal tubules are exposed to a high concentration of iron owing to increased glomerular filtration of iron and iron-containing proteins, including haemoglobin, transferrin and neutrophil gelatinase-associated lipocalin (NGAL). Levels of intracellular catalytic iron may increase when glomerular and renal tubular cells are injured. Reducing the excessive luminal or intracellular levels of iron in the kidney could be a promising approach to treat AKI and CKD. Understanding the role of iron in kidney injury and as a therapeutic target requires insight into the mechanisms of iron metabolism in the kidney, the role of endogenous proteins involved in iron chelation and transport, including hepcidin, NGAL, the NGAL receptor and divalent metal transporter 1, and iron-induced toxic effects. This Review summarizes emergin...

Research paper thumbnail of Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin

Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 2006

Peptide receptor-mediated radiotherapy of neuroendocrine and other somatostatin receptor-positive... more Peptide receptor-mediated radiotherapy of neuroendocrine and other somatostatin receptor-positive tumors with radiolabeled somatostatin analogs has been applied in several experimental settings. The kidneys are the organs responsible for dose-limiting toxicity attributable to the retention of radiolabeled octreotide in the renal cortex, leading to a relatively high radiation dose that may result in irreversible loss of kidney function. The administration of basic amino acids reduces renal uptake but does have significant side effects. We observed that gelatin-based plasma expanders induced tubular low-molecular-weight proteinuria in healthy volunteers, suggesting that components in these solutions can interfere with the tubular reabsorption of proteins and peptides. Here, we studied the effects of infusion of low doses of the plasma expander succinylated gelatin (GELO) on the renal uptake of 111In-labeled octreotide (111In-OCT). Five healthy volunteers were given 111In-OCT, first in...

Research paper thumbnail of Reply to LTE: Inhibition of Kidney Uptake of Radiolabeled Somatostatin Analogs: Amino Acids or Gelofusine?

Journal of Nuclear Medicine - J NUCL MED, 2006

Research paper thumbnail of Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter

Pflügers Archiv - European Journal of Physiology, 2013

Several organic cations, such as guanidino compounds and polyamines, have been found to accumulat... more Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP + ). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP + uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP + uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC 50 =44±2 μM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 μM ASP + , which demonstrated competitive or mixed type of interaction (K i =93 ± 16 μM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP + uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several

Research paper thumbnail of The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane

Kidney International, 2008

The Breast Cancer Resistance Protein (BCRP/ABCG2) is a transporter restricting absorption and enh... more The Breast Cancer Resistance Protein (BCRP/ABCG2) is a transporter restricting absorption and enhancing excretion of many compounds including anticancer drugs. This transporter is highly expressed in many tissues; however, in human kidney, only the mRNA was found in contrast to the mouse kidney, where the transporter is abundant. In bcrp/abcg2((-/-)) mice, the expression of two sterol transporter genes, abcg5 and abcg8, was strongly increased in the kidney, perhaps as a compensatory mechanism to upregulate efflux. We found using immunohistochemical analysis clear localization of BCRP/ABCG2 to the proximal tubule brush border membrane of the human kidney comparable to that of other ABC transporters such as P-glycoprotein/ABCB1, MRP2/ABCC2, and MRP4/ABCC4. Hoechst 33342 dye efflux from primary human proximal tubule cells was significantly reduced by the BCRP/ABCG2 inhibitors fumitremorgin C and nelfinavir. Our study shows that in addition to other apical ABC transporters, BCRP/ABCG2 may be important in renal drug excretion.

Research paper thumbnail of A morphological and functional comparison of proximal tubule cell lines established from human urine and kidney tissue

Experimental Cell Research, 2014

Promising renal replacement therapies include the development of a bioartificial kidney using fun... more Promising renal replacement therapies include the development of a bioartificial kidney using functional human kidney cell models. In this study, human conditionally immortalized proximal tubular epithelial cell (ciPTEC) lines originating from kidney tissue (ciPTEC-T1 and ciPTEC-T2) were compared to ciPTEC previously isolated from urine (ciPTEC-U). Subclones of all ciPTEC isolates formed tight cell layers on Transwell inserts as determined by transepithelial resistance, inulin diffusion, E-cadherin expression and immunocytochemisty. Extracellular matrix genes collagen I and -IV α1 were highly present in both kidney tissue derived matured cell lines (p<0.001) compared to matured ciPTEC-U, whereas matured ciPTEC-U showed a more pronounced fibronectin I and laminin 5 gene expression (p<0.01 and p<0.05, respectively). Expression of the influx carrier Organic Cation Transporter 2 (OCT-2), and the efflux pumps P-glycoprotein (P-gp), Multidrug Resistance Protein 4 (MRP4) and Breast Cancer Resistance Protein (BCRP) were confirmed in the three cell lines using real-time PCR and Western blotting. The activities of OCT-2 and P-gp were sensitive to specific inhibition in all models (p<0.001). The highest activity of MRP4 and BCRP was demonstrated in ciPTEC-U (p<0.05). Finally, active albumin reabsorption was highest in ciPTEC-T2 (p<0.001), while Na(+)-dependent phosphate reabsorption was most abundant in ciPTEC-U (p<0.01). In conclusion, ciPTEC established from human urine or kidney tissue display comparable functional PTEC specific transporters and physiological characteristics, providing ideal human tools for bioartificial kidney development.

Research paper thumbnail of Epithelial-to-mesenchymal transition in fibrosis: Collagen type I expression is highly upregulated after EMT, but does not contribute to collagen deposition

Experimental Cell Research, 2013

The hallmark of fibrosis is an accumulation of fibrillar collagens, especially of collagen type I... more The hallmark of fibrosis is an accumulation of fibrillar collagens, especially of collagen type I. There is considerable debate whether in vivo type II epithelial-to-mesenchymal transition (EMT) is involved in organ fibrosis. Lineage tracing experiments by various groups show opposing data concerning the relative contribution of epithelial cells to the pool of myofibroblasts. We hypothesized that EMT-derived cells might directly contribute to collagen deposition. To study this, EMT was induced in human epithelial lung and renal cell lines in vitro by means of TGF-β1 stimulation, and we compared the collagen type I (COL1A1) expression levels of transdifferentiated cells with that of myofibroblasts obtained by TGF-β1 stimulation of human dermal and lung fibroblasts. COL1A1 expression levels of transdifferentiated epithelial cells appeared to be at least one to two orders of magnitude lower than that of myofibroblasts. This was confirmed at immunohistochemical level: in contrast to myofibroblasts, collagen type I deposition by EMT-derived cells was not or hardly detectable. We postulate that, even when type II EMT occurs in vivo, the direct contribution of EMT-derived cells to collagen accumulation is rather limited.

Research paper thumbnail of Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters

Cell and Tissue Research, 2010

Reabsorption of filtered solutes from the glomerular filtrate and excretion of waste products and... more Reabsorption of filtered solutes from the glomerular filtrate and excretion of waste products and xenobiotics are the main functions of the renal proximal tubular (PT) epithelium. A human PT cell line expressing a range of functional transporters would help to augment current knowledge in renal physiology and pharmacology. We have established and characterized a conditionally immortalized PT epithelial cell line (ciPTEC) obtained by trans-fecting and subcloning cells exfoliated in the urine of a healthy volunteer. The PT origin of this line has been confirmed morphologically and by the expression of aminopeptidase N, zona occludens 1, aquaporin 1, dipeptidyl peptidase IV and multidrug resistance protein 4 together with alkaline phosphatase activity. ciPTEC assembles in a tight monolayer with limited diffusion of inulin-fluorescein-isothiocyanate. Concentration and timedependent reabsorption of albumin via endocytosis has been demonstrated, together with sodium-dependent phosphate uptake. The expression and activity of apical efflux transporter p-glycoprotein and of baso-lateral influx transporter organic cation transporter 2 have been shown in ciPTEC. This established human ciPTEC expressing multiple endogenous organic ion transporters mimicking renal reabsorption and excretion represents a powerful tool for future in vitro transport studies in pharmacology and physiology.

Research paper thumbnail of Cysteamine restores glutathione redox status in cultured cystinotic proximal tubular epithelial cells

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2011

Recent evidence implies that impaired metabolism of glutathione has a role in the pathogenesis of... more Recent evidence implies that impaired metabolism of glutathione has a role in the pathogenesis of nephropathic cystinosis. This recessive inherited disorder is characterized by lysosomal cystine accumulation and results in renal Fanconi syndrome progressing to end stage renal disease in the majority of patients. The most common treatment involves intracellular cystine depletion by cysteamine, delaying the development of end stage renal disease by a yet elusive mechanism. However, cystine depletion does not arrest the disease nor cures Fanconi syndrome in patients, indicating involvement of other yet unknown pathologic pathways. Using a newly developed proximal tubular epithelial cell model from cystinotic patients, we investigate the effect of cystine accumulation and cysteamine on both glutathione and ATP metabolism. In addition to the expected increase in cystine and defective sodium-dependent phosphate reabsorption, we observed less negative glutathione redox status and decreased intracellular ATP levels. No differences between control and cystinosis cell lines were observed with respect to protein turnover, albumin uptake, cytosolic and mitochondrial ATP production, total glutathione levels, protein oxidation and lipid peroxidation. Cysteamine treatment increased total glutathione in both control and cystinotic cells and normalized cystine levels and glutathione redox status in cystinotic cells. However, cysteamine did not improve decreased sodium-dependent phosphate uptake. Our data implicate that cysteamine increases total glutathione and restores glutathione redox status in cystinosis, which is a positive side-effect of this agent next to cystine depletion. This beneficial effect points to a potential role of cysteamine as anti-oxidant for other renal disorders associated with enhanced oxidative stress.

Research paper thumbnail of Uremic toxins inhibit renal metabolic capacity through interference with glucuronidation and mitochondrial respiration

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2013

During chronic kidney disease (CKD), drug metabolism is affected leading to changes in drug dispo... more During chronic kidney disease (CKD), drug metabolism is affected leading to changes in drug disposition. Furthermore, there is a progressive accumulation of uremic retention solutes due to impaired renal clearance. Here, we investigated whether uremic toxins can influence the metabolic functionality of human conditionally immortalized renal proximal tubule epithelial cells (ciPTEC) with the focus on UDP-glucuronosyltransferases (UGTs) and mitochondrial activity. Our results showed that ciPTEC express a wide variety of metabolic enzymes, including UGTs. These enzymes were functionally active as demonstrated by the glucuronidation of 7-hydroxycoumarin (7-OHC; K(m) of 12±2μM and a V(max) of 76±3pmol/min/mg) and p-cresol (K(m) of 33±13μM and a V(max) of 266±25pmol/min/mg). Furthermore, a wide variety of uremic toxins, including indole-3-acetic acid, indoxyl sulfate, phenylacetic acid and kynurenic acid, reduced 7-OHC glucuronidation with more than 30% as compared with controls (p<0.05), whereas UGT1A and UGT2B protein expressions remained unaltered. In addition, our results showed that several uremic toxins inhibited mitochondrial succinate dehydrogenase (i.e. complex II) activity with more than 20% as compared with controls (p<0.05). Moreover, indole-3-acetic acid decreased the reserve capacity of the electron transport system with 18% (p<0.03). In conclusion, this study shows that multiple uremic toxins inhibit UGT activity and mitochondrial activity in ciPTEC, thereby affecting the metabolic capacity of the kidney during CKD. This may have a significant impact on drug and uremic retention solute disposition in CKD patients.

Research paper thumbnail of Biotechnological challenges of bioartificial kidney engineering

Biotechnology advances, Jan 15, 2014

With the world-wide increase of patients with renal failure, the development of functional renal ... more With the world-wide increase of patients with renal failure, the development of functional renal replacement therapies have gained significant interest and novel technologies are rapidly evolving. Currently used renal replacement therapies insufficiently remove accumulating waste products, resulting in the uremic syndrome. A more preferred treatment option is kidney transplantation, but the shortage of donor organs and the increasing number of patients waiting for a transplant warrant the development of novel technologies. The bioartificial kidney (BAK) is such promising biotechnological approach to replace essential renal functions together with the active secretion of waste products. The development of the BAK requires a multidisciplinary approach and evolves at the intersection of regenerative medicine and renal replacement therapy. Here we provide a concise review embracing a compact historical overview of bioartificial kidney development and highlighting the current state-of-th...

Research paper thumbnail of Iron metabolism in the pathogenesis of iron-induced kidney injury

Nature reviews. Nephrology, 2013

In the past 8 years, there has been renewed interest in the role of iron in both acute kidney inj... more In the past 8 years, there has been renewed interest in the role of iron in both acute kidney injury (AKI) and chronic kidney disease (CKD). In patients with kidney diseases, renal tubules are exposed to a high concentration of iron owing to increased glomerular filtration of iron and iron-containing proteins, including haemoglobin, transferrin and neutrophil gelatinase-associated lipocalin (NGAL). Levels of intracellular catalytic iron may increase when glomerular and renal tubular cells are injured. Reducing the excessive luminal or intracellular levels of iron in the kidney could be a promising approach to treat AKI and CKD. Understanding the role of iron in kidney injury and as a therapeutic target requires insight into the mechanisms of iron metabolism in the kidney, the role of endogenous proteins involved in iron chelation and transport, including hepcidin, NGAL, the NGAL receptor and divalent metal transporter 1, and iron-induced toxic effects. This Review summarizes emergin...

Research paper thumbnail of Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin

Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 2006

Peptide receptor-mediated radiotherapy of neuroendocrine and other somatostatin receptor-positive... more Peptide receptor-mediated radiotherapy of neuroendocrine and other somatostatin receptor-positive tumors with radiolabeled somatostatin analogs has been applied in several experimental settings. The kidneys are the organs responsible for dose-limiting toxicity attributable to the retention of radiolabeled octreotide in the renal cortex, leading to a relatively high radiation dose that may result in irreversible loss of kidney function. The administration of basic amino acids reduces renal uptake but does have significant side effects. We observed that gelatin-based plasma expanders induced tubular low-molecular-weight proteinuria in healthy volunteers, suggesting that components in these solutions can interfere with the tubular reabsorption of proteins and peptides. Here, we studied the effects of infusion of low doses of the plasma expander succinylated gelatin (GELO) on the renal uptake of 111In-labeled octreotide (111In-OCT). Five healthy volunteers were given 111In-OCT, first in...

Research paper thumbnail of Reply to LTE: Inhibition of Kidney Uptake of Radiolabeled Somatostatin Analogs: Amino Acids or Gelofusine?

Journal of Nuclear Medicine - J NUCL MED, 2006

Research paper thumbnail of Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter

Pflügers Archiv - European Journal of Physiology, 2013

Several organic cations, such as guanidino compounds and polyamines, have been found to accumulat... more Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP + ). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP + uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP + uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC 50 =44±2 μM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 μM ASP + , which demonstrated competitive or mixed type of interaction (K i =93 ± 16 μM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP + uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several

Research paper thumbnail of The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane

Kidney International, 2008

The Breast Cancer Resistance Protein (BCRP/ABCG2) is a transporter restricting absorption and enh... more The Breast Cancer Resistance Protein (BCRP/ABCG2) is a transporter restricting absorption and enhancing excretion of many compounds including anticancer drugs. This transporter is highly expressed in many tissues; however, in human kidney, only the mRNA was found in contrast to the mouse kidney, where the transporter is abundant. In bcrp/abcg2((-/-)) mice, the expression of two sterol transporter genes, abcg5 and abcg8, was strongly increased in the kidney, perhaps as a compensatory mechanism to upregulate efflux. We found using immunohistochemical analysis clear localization of BCRP/ABCG2 to the proximal tubule brush border membrane of the human kidney comparable to that of other ABC transporters such as P-glycoprotein/ABCB1, MRP2/ABCC2, and MRP4/ABCC4. Hoechst 33342 dye efflux from primary human proximal tubule cells was significantly reduced by the BCRP/ABCG2 inhibitors fumitremorgin C and nelfinavir. Our study shows that in addition to other apical ABC transporters, BCRP/ABCG2 may be important in renal drug excretion.

Research paper thumbnail of A morphological and functional comparison of proximal tubule cell lines established from human urine and kidney tissue

Experimental Cell Research, 2014

Promising renal replacement therapies include the development of a bioartificial kidney using fun... more Promising renal replacement therapies include the development of a bioartificial kidney using functional human kidney cell models. In this study, human conditionally immortalized proximal tubular epithelial cell (ciPTEC) lines originating from kidney tissue (ciPTEC-T1 and ciPTEC-T2) were compared to ciPTEC previously isolated from urine (ciPTEC-U). Subclones of all ciPTEC isolates formed tight cell layers on Transwell inserts as determined by transepithelial resistance, inulin diffusion, E-cadherin expression and immunocytochemisty. Extracellular matrix genes collagen I and -IV α1 were highly present in both kidney tissue derived matured cell lines (p<0.001) compared to matured ciPTEC-U, whereas matured ciPTEC-U showed a more pronounced fibronectin I and laminin 5 gene expression (p<0.01 and p<0.05, respectively). Expression of the influx carrier Organic Cation Transporter 2 (OCT-2), and the efflux pumps P-glycoprotein (P-gp), Multidrug Resistance Protein 4 (MRP4) and Breast Cancer Resistance Protein (BCRP) were confirmed in the three cell lines using real-time PCR and Western blotting. The activities of OCT-2 and P-gp were sensitive to specific inhibition in all models (p<0.001). The highest activity of MRP4 and BCRP was demonstrated in ciPTEC-U (p<0.05). Finally, active albumin reabsorption was highest in ciPTEC-T2 (p<0.001), while Na(+)-dependent phosphate reabsorption was most abundant in ciPTEC-U (p<0.01). In conclusion, ciPTEC established from human urine or kidney tissue display comparable functional PTEC specific transporters and physiological characteristics, providing ideal human tools for bioartificial kidney development.

Research paper thumbnail of Epithelial-to-mesenchymal transition in fibrosis: Collagen type I expression is highly upregulated after EMT, but does not contribute to collagen deposition

Experimental Cell Research, 2013

The hallmark of fibrosis is an accumulation of fibrillar collagens, especially of collagen type I... more The hallmark of fibrosis is an accumulation of fibrillar collagens, especially of collagen type I. There is considerable debate whether in vivo type II epithelial-to-mesenchymal transition (EMT) is involved in organ fibrosis. Lineage tracing experiments by various groups show opposing data concerning the relative contribution of epithelial cells to the pool of myofibroblasts. We hypothesized that EMT-derived cells might directly contribute to collagen deposition. To study this, EMT was induced in human epithelial lung and renal cell lines in vitro by means of TGF-β1 stimulation, and we compared the collagen type I (COL1A1) expression levels of transdifferentiated cells with that of myofibroblasts obtained by TGF-β1 stimulation of human dermal and lung fibroblasts. COL1A1 expression levels of transdifferentiated epithelial cells appeared to be at least one to two orders of magnitude lower than that of myofibroblasts. This was confirmed at immunohistochemical level: in contrast to myofibroblasts, collagen type I deposition by EMT-derived cells was not or hardly detectable. We postulate that, even when type II EMT occurs in vivo, the direct contribution of EMT-derived cells to collagen accumulation is rather limited.

Research paper thumbnail of Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters

Cell and Tissue Research, 2010

Reabsorption of filtered solutes from the glomerular filtrate and excretion of waste products and... more Reabsorption of filtered solutes from the glomerular filtrate and excretion of waste products and xenobiotics are the main functions of the renal proximal tubular (PT) epithelium. A human PT cell line expressing a range of functional transporters would help to augment current knowledge in renal physiology and pharmacology. We have established and characterized a conditionally immortalized PT epithelial cell line (ciPTEC) obtained by trans-fecting and subcloning cells exfoliated in the urine of a healthy volunteer. The PT origin of this line has been confirmed morphologically and by the expression of aminopeptidase N, zona occludens 1, aquaporin 1, dipeptidyl peptidase IV and multidrug resistance protein 4 together with alkaline phosphatase activity. ciPTEC assembles in a tight monolayer with limited diffusion of inulin-fluorescein-isothiocyanate. Concentration and timedependent reabsorption of albumin via endocytosis has been demonstrated, together with sodium-dependent phosphate uptake. The expression and activity of apical efflux transporter p-glycoprotein and of baso-lateral influx transporter organic cation transporter 2 have been shown in ciPTEC. This established human ciPTEC expressing multiple endogenous organic ion transporters mimicking renal reabsorption and excretion represents a powerful tool for future in vitro transport studies in pharmacology and physiology.

Research paper thumbnail of Cysteamine restores glutathione redox status in cultured cystinotic proximal tubular epithelial cells

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2011

Recent evidence implies that impaired metabolism of glutathione has a role in the pathogenesis of... more Recent evidence implies that impaired metabolism of glutathione has a role in the pathogenesis of nephropathic cystinosis. This recessive inherited disorder is characterized by lysosomal cystine accumulation and results in renal Fanconi syndrome progressing to end stage renal disease in the majority of patients. The most common treatment involves intracellular cystine depletion by cysteamine, delaying the development of end stage renal disease by a yet elusive mechanism. However, cystine depletion does not arrest the disease nor cures Fanconi syndrome in patients, indicating involvement of other yet unknown pathologic pathways. Using a newly developed proximal tubular epithelial cell model from cystinotic patients, we investigate the effect of cystine accumulation and cysteamine on both glutathione and ATP metabolism. In addition to the expected increase in cystine and defective sodium-dependent phosphate reabsorption, we observed less negative glutathione redox status and decreased intracellular ATP levels. No differences between control and cystinosis cell lines were observed with respect to protein turnover, albumin uptake, cytosolic and mitochondrial ATP production, total glutathione levels, protein oxidation and lipid peroxidation. Cysteamine treatment increased total glutathione in both control and cystinotic cells and normalized cystine levels and glutathione redox status in cystinotic cells. However, cysteamine did not improve decreased sodium-dependent phosphate uptake. Our data implicate that cysteamine increases total glutathione and restores glutathione redox status in cystinosis, which is a positive side-effect of this agent next to cystine depletion. This beneficial effect points to a potential role of cysteamine as anti-oxidant for other renal disorders associated with enhanced oxidative stress.

Research paper thumbnail of Uremic toxins inhibit renal metabolic capacity through interference with glucuronidation and mitochondrial respiration

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2013

During chronic kidney disease (CKD), drug metabolism is affected leading to changes in drug dispo... more During chronic kidney disease (CKD), drug metabolism is affected leading to changes in drug disposition. Furthermore, there is a progressive accumulation of uremic retention solutes due to impaired renal clearance. Here, we investigated whether uremic toxins can influence the metabolic functionality of human conditionally immortalized renal proximal tubule epithelial cells (ciPTEC) with the focus on UDP-glucuronosyltransferases (UGTs) and mitochondrial activity. Our results showed that ciPTEC express a wide variety of metabolic enzymes, including UGTs. These enzymes were functionally active as demonstrated by the glucuronidation of 7-hydroxycoumarin (7-OHC; K(m) of 12±2μM and a V(max) of 76±3pmol/min/mg) and p-cresol (K(m) of 33±13μM and a V(max) of 266±25pmol/min/mg). Furthermore, a wide variety of uremic toxins, including indole-3-acetic acid, indoxyl sulfate, phenylacetic acid and kynurenic acid, reduced 7-OHC glucuronidation with more than 30% as compared with controls (p<0.05), whereas UGT1A and UGT2B protein expressions remained unaltered. In addition, our results showed that several uremic toxins inhibited mitochondrial succinate dehydrogenase (i.e. complex II) activity with more than 20% as compared with controls (p<0.05). Moreover, indole-3-acetic acid decreased the reserve capacity of the electron transport system with 18% (p<0.03). In conclusion, this study shows that multiple uremic toxins inhibit UGT activity and mitochondrial activity in ciPTEC, thereby affecting the metabolic capacity of the kidney during CKD. This may have a significant impact on drug and uremic retention solute disposition in CKD patients.

Research paper thumbnail of Biotechnological challenges of bioartificial kidney engineering

Biotechnology advances, Jan 15, 2014

With the world-wide increase of patients with renal failure, the development of functional renal ... more With the world-wide increase of patients with renal failure, the development of functional renal replacement therapies have gained significant interest and novel technologies are rapidly evolving. Currently used renal replacement therapies insufficiently remove accumulating waste products, resulting in the uremic syndrome. A more preferred treatment option is kidney transplantation, but the shortage of donor organs and the increasing number of patients waiting for a transplant warrant the development of novel technologies. The bioartificial kidney (BAK) is such promising biotechnological approach to replace essential renal functions together with the active secretion of waste products. The development of the BAK requires a multidisciplinary approach and evolves at the intersection of regenerative medicine and renal replacement therapy. Here we provide a concise review embracing a compact historical overview of bioartificial kidney development and highlighting the current state-of-th...