Lukasz Wyrzykowski | University of Warsaw (original) (raw)

Papers by Lukasz Wyrzykowski

Research paper thumbnail of OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event

Astrophysical Journal, 2004

We present observations of the unusual microlensing event OGLE 2003-BLG-235/MOA 2003-BLG-53. In t... more We present observations of the unusual microlensing event OGLE 2003-BLG-235/MOA 2003-BLG-53. In this event a short duration (~7 days) low amplitude deviation in the light curve due a single lens profile was observed in both the MOA and OGLE survey observations. We find that the observed features of the light curve can only be reproduced using a binary microlensing model with an extreme (planetary) mass ratio of 0.0039 +/- (11, 07) for the lensing system. If the lens system comprises a main sequence primary, we infer that the secondary is a planet of about 1.5 Jupiter masses with an orbital radius of ~3 AU.

Research paper thumbnail of Microlensing Event MOA2007-BLG-400: Exhuming the Buried Signature of a Cool, Jovian-Mass Planet

Astrophysical Journal, 2009

We report the detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb. The planet was detect... more We report the detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb. The planet was detected in a high-magnification microlensing event (with peak magnification A_max = 628) in which the primary lens transited the source, resulting in a dramatic smoothing of the peak of the event. The angular extent of the region of perturbation due to the planet is significantly smaller than the angular size of the source, and as a result the planetary signature is also smoothed out by the finite source size. Thus the deviation from a single-lens fit is broad and relatively weak (~ few percent). Nevertheless, we demonstrate that the planetary nature of the deviation can be unambiguously ascertained from the gross features of the residuals, and detailed analysis yields a fairly precise planet/star mass ratio of q = 0.0026+/-0.0004, in accord with the large significance (\Delta\chi^2=1070) of the detection. The planet/star projected separation is subject to a strong close/wide degeneracy, leading to two indistinguishable solutions that differ in separation by a factor of ~8.5. Upper limits on flux from the lens constrain its mass to be M < 0.75 M_Sun (assuming it is a main-sequence star). A Bayesian analysis that includes all available observational constraints indicates a primary in the Galactic bulge with a mass of ~0.2-0.5 M_Sun and thus a planet mass of ~ 0.5-1.3 M_Jupiter. The separation and equilibrium temperature are ~0.6-1.1AU (~5.3-9.7AU) and ~103K (~34K) for the close (wide) solution. If the primary is a main-sequence star, follow-up observations would enable the detection of its light and so a measurement of its mass and distance.

Research paper thumbnail of Light and motion in SDSS Stripe 82: the catalogues

Monthly Notices of The Royal Astronomical Society, 2008

For each light-motion curve, 229 photometric and astrometric quantities are derived and stored in... more For each light-motion curve, 229 photometric and astrometric quantities are derived and stored in a higher-level catalogue. On the photometric side, these include mean exponential and PSF magnitudes along with uncertainties, RMS scatter, chi^2 per degree of freedom, various magnitude distribution percentiles, object type (stellar or galaxy), and eclipse, Stetson and Vidrih variability indices. On the astrometric side, these quantities include mean positions, proper motions as well as their uncertainties and chi^2 per degree of freedom. The here presented light-motion curve catalogue is complete down to r~21.5 and is at present the deepest large-area photometric and astrometric variability catalogue available.

Research paper thumbnail of A Cold Neptune-Mass Planet OGLE2007-BLG-368Lb: Cold Neptunes Are Common

Astrophysical Journal, 2010

We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a planet-star mass rat... more We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a planet-star mass ratio of q=[9.5 +/- 2.1] x 10^{-5} via gravitational microlensing. The planetary deviation was detected in real-time thanks to the high cadence of the MOA survey, real-time light curve monitoring and intensive follow-up observations. A Bayesian analysis returns the stellar mass and distance at M_l = 0.64_{-0.26}^{+0.21} M_\sun and D_l = 5.9_{-1.4}^{+0.9} kpc, respectively, so the mass and separation of the planet are M_p = 20_{-8}^{+7} M_\oplus and a = 3.3_{-0.8}^{+1.4} AU, respectively. This discovery adds another cold Neptune-mass planet to the planetary sample discovered by microlensing, which now comprise four cold Neptune/Super-Earths, five gas giant planets, and another sub-Saturn mass planet whose nature is unclear. The discovery of these ten cold exoplanets by the microlensing method implies that the mass ratio function of cold exoplanets scales as dN_{\rm pl}/d\log q \propto q^{-0.7 +/- 0.2} with a 95% confidence level upper limit of n < -0.35 (where dN_{\rm pl}/d\log q \propto q^n). As microlensing is most sensitive to planets beyond the snow-line, this implies that Neptune-mass planets are at least three times more common than Jupiters in this region at the 95% confidence level.

Research paper thumbnail of Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing

Science, 2008

Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet... more Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of ~0.71 and ~0.27 times the mass of Jupiter and orbital separations of ~2.3 and ~4.6 astronomical units orbiting a primary star of mass ~0.50 solar masses at a distance of ~1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

Research paper thumbnail of A Jovian-Mass Planet in Microlensing Event OGLE2005-BLG-071

Astrophysical Journal, 2005

We report the discovery of a several-Jupiter mass planetary companion to the primary lens star in... more We report the discovery of a several-Jupiter mass planetary companion to the primary lens star in microlensing event OGLE-2005-BLG-071. Precise (<1%) photometry at the peak of the event yields an extremely high signal-to-noise ratio detection of a deviation from the light curve expected from an isolated lens. The planetary character of this deviation is easily and unambiguously discernible from the gross features of the light curve. Detailed modeling yields a tightly-constrained planet-star mass ratio of q=m_p/M=0.0071+/-0.0003. This is the second robust detection of a planet with microlensing, demonstrating that the technique itself is viable and that planets are not rare in the systems probed by microlensing, which typically lie several kpc toward the Galactic center.

Research paper thumbnail of Discovery of a cool planet of 5.5 Earth masses through gravitationalmicrolensing

Research paper thumbnail of Microlens OGLE2005-BLG-169 Implies That Cool Neptune-like Planets Are Common

Astrophysical Journal, 2006

Research paper thumbnail of OGLE2003-BLG-238: Microlensing Mass Estimate of an Isolated Star

Astrophysical Journal, 2004

Microlensing is the only known direct method to measure the masses of stars that lack visible com... more Microlensing is the only known direct method to measure the masses of stars that lack visible companions. In terms of microlensing observables, the mass is given by M=(c^2/4G)\tilde r_E \theta_E and so requires the measurement of both the angular Einstein radius, \theta_E, and the projected Einstein radius, \tilde r_E. Simultaneous measurement of these two parameters is extremely rare. Here we analyze OGLE-2003-BLG-238, a spectacularly bright (I_min=10.3), high-magnification (A_max = 170) microlensing event. Pronounced finite source effects permit a measurement of \theta_E = 650 uas. Although the timescale of the event is only t_E = 38 days, one can still obtain weak constraints on the microlens parallax: 4.4 AU < \tilde r_E < 18 AU at the 1 \sigma level. Together these two parameter measurements yield a range for the lens mass of 0.36 M_sun < M < 1.48 M_sun. As was the case for MACHO-LMC-5, the only other single star (apart from the Sun) whose mass has been determined from its gravitational effects, this estimate is rather crude. It does, however, demonstrate the viability of the technique. We also discuss future prospects for single-lens mass measurements.

Research paper thumbnail of Frequency of Solar-like Systems and of Ice and Gas Giants Beyond the Snow Line from High-magnification Microlensing Events in 2005-2008

Astrophysical Journal, 2010

We present the first measurement of planet frequency beyond the "snow line" for planet/star mass-... more We present the first measurement of planet frequency beyond the "snow line" for planet/star mass-ratios[-4.5<log q<-2]: d^2 N/dlog q/dlog s=(0.36+-0.15)/dex^2 at mean mass ratio q=5e-4, and consistent with being flat in log projected separation, s. Our result is based on a sample of 6 planets detected from intensive follow-up of high-mag (A>200) microlensing events during 2005-8. The sample host stars have typical mass M_host 0.5 Msun, and detection is sensitive to planets over a range of projected separations (R_E/s_max,R_E*s_max), where R_E 3.5 AU sqrt(M_host/Msun) is the Einstein radius and s_max (q/5e-5)^{2/3}, corresponding to deprojected separations ~3 times the "snow line". Though frenetic, the observations constitute a "controlled experiment", which permits measurement of absolute planet frequency. High-mag events are rare, but the high-mag channel is efficient: half of high-mag events were successfully monitored and half of these yielded planet detections. The planet frequency derived from microlensing is a factor 7 larger than from RV studies at factor ~25 smaller separations [2<P<2000 days]. However, this difference is basically consistent with the gradient derived from RV studies (when extrapolated well beyond the separations from which it is measured). This suggests a universal separation distribution across 2 dex in semi-major axis, 2 dex in mass ratio, and 0.3 dex in host mass. Finally, if all planetary systems were "analogs" of the Solar System, our sample would have yielded 18.2 planets (11.4 "Jupiters", 6.4 "Saturns", 0.3 "Uranuses", 0.2 "Neptunes") including 6.1 systems with 2 or more planet detections. This compares to 6 planets including one 2-planet system in the actual sample, implying a first estimate of 1/6 for the frequency of solar-like systems.

Research paper thumbnail of A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA2007-BLG-192

Astrophysical Journal, 2008

We report the detection of an extrasolar planet of mass ratio q ~ 2 x 10^(-4) in microlensing eve... more We report the detection of an extrasolar planet of mass ratio q ~ 2 x 10^(-4) in microlensing event MOA-2007-BLG-192. The best fit microlensing model shows both the microlensing parallax and finite source effects, and these can be combined to obtain the lens masses of M = 0.060 (+0.028 -0.021) M_sun for the primary and m = 3.3 (+4.9 -1.6) M_earth for the planet. However, the observational coverage of the planetary deviation is sparse and incomplete, and the radius of the source was estimated without the benefit of a source star color measurement. As a result, the 2-sigma limits on the mass ratio and finite source measurements are weak. Nevertheless, the microlensing parallax signal clearly favors a sub-stellar mass planetary host, and the measurement of finite source effects in the light curve supports this conclusion. Adaptive optics images taken with the Very Large Telescope (VLT) NACO instrument are consistent with a lens star that is either a brown dwarf or a star at the bottom of the main sequence. Follow-up VLT and/or Hubble Space Telescope (HST) observations will either confirm that the primary is a brown dwarf or detect the low-mass lens star and enable a precise determination of its mass. In either case, the lens star, MOA-2007-BLG-192L, is the lowest mass primary known to have a companion with a planetary mass ratio, and the planet, MOA-2007-BLG-192Lb, is probably the lowest mass exoplanet found to date, aside from the lowest mass pulsar planet.

Research paper thumbnail of Microlens OGLE2005-BLG-169 Implies Cool Neptune-Like Planets are Common

We detect a Neptune mass-ratio (q~8e-5) planetary companion to the lens star in the extremely hig... more We detect a Neptune mass-ratio (q~8e-5) planetary companion to the lens star in the extremely high-magnification (A~800) microlensing event OGLE-2005-BLG-169. If the parent is a main-sequence star, it has mass M~0.5 M_sun implying a planet mass of ~13 M_earth and projected separation of ~2.7 AU. When intensely monitored over their peak, high-magnification events similar to OGLE-2005-BLG-169 have nearly complete sensitivity to Neptune mass-ratio planets with projected separations of 0.6 to 1.6 Einstein radii, corresponding to 1.6--4.3 AU in the present case. Only two other such events were monitored well enough to detect Neptunes, and so this detection by itself suggests that Neptune mass-ratio planets are common. Moreover, another Neptune was recently discovered at a similar distance from its parent star in a low-magnification event, which are more common but are individually much less sensitive to planets. Combining the two detections yields 90% upper and lower frequency limits f=0.37^{+0.30}_{-0.21} over just 0.4 decades of planet-star separation. In particular, f>16% at 90% confidence. The parent star hosts no Jupiter-mass companions with projected separations within a factor 5 of that of the detected planet. The lens-source relative proper motion is \mu~7--10 mas/yr, implying that if the lens is sufficiently bright, I<23.8, it will be detectable by HST by 3 years after peak. This would permit a more precise estimate of the lens mass and distance, and so the mass and projected separation of the planet. Analogs of OGLE-2005-BLG-169Lb orbiting nearby stars would be difficult to detect by other methods of planet detection, including radial velocities, transits, or astrometry.

Research paper thumbnail of Search for Low-Mass Exoplanets by Gravitational Microlensing at High Magnification

Science, 2004

Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presen... more Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presented for which the peak magnification was over 500, the highest yet reported. Continuous observations around the peak enabled a sensitive search for planets orbiting the lens star. No planets were detected. Planets 1.3 times heavier than Earth were excluded from more than 50 % of the projected annular region from approximately 2.3 to 3.6 astronomical units surrounding the lens star, Uranus-mass planets from 0.9 to 8.7 astronomical units, and planets 1.3 times heavier than Saturn from 0.2 to 60 astronomical units. These are the largest regions of sensitivity yet achieved in searches for extrasolar planets orbiting any star.

Research paper thumbnail of Removing the Microlensing Blending-Parallax Degeneracy Using Source Variability

Astrophysical Journal, 2006

Microlensing event MACHO 97-SMC-1 is one of the rare microlensing events for which the source is ... more Microlensing event MACHO 97-SMC-1 is one of the rare microlensing events for which the source is a variable star, simply because most variable stars are systematically eliminated from microlensing studies. Using observational data for this event, we show that the intrinsic variability of a microlensed star is a powerful tool to constrain the nature of the lens by breaking the degeneracy between the microlens parallax and the blended light. We also present a statistical test for discriminating the location of the lens based on the \chi^2 contours of the vector \Lambda, the inverse of the projected velocity. We find that while SMC self lensing is somewhat favored over halo lensing, neither location can be ruled out with good confidence.

Research paper thumbnail of Potential Direct Single-Star Mass Measurement

Astrophysical Journal, 2004

Research paper thumbnail of The Optical Gravitational Lensing Experiment. Catalog of RR Lyr Stars in the Large Magellanic Cloud

Acta Astronomica, 2003

We also provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, ... more We also provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, NGC 1835, hosts 84 RR Lyr variables.

Research paper thumbnail of Discovery of the Low-Redshift Afterglow of GRB 011121 and Its Progenitor Supernova 2001ke

We present the discovery and follow-up observations of the afterglow of the GRB 011121 and its as... more We present the discovery and follow-up observations of the afterglow of the GRB 011121 and its associated supernova SN 2001ke. Images were obtained with the OGLE 1.3m telescope in BVRI passbands, starting 10.3 hours after the burst. The temporal analysis of our early data indicates a steep decay, independent of wavelength with power-law index alpha=-1.72+/-0.05. There is no evidence for a break in the light curve earlier than 2.5 days after the burst. The spectral energy distribution determined from the early broad-band photometry is a power-law with index beta=-0.66+/-0.13 after correcting for a large reddening. Spectra, obtained with the Magellan 6.5m Baade telescope, reveal narrow emission lines from the host galaxy which provide a redshift of z=0.362+/-0.001 to the GRB. We also present late R and J-band observations of the afterglow between 7-17 days after the burst. The late-time photometry shows a large deviation from the initial decline and our data combined with Hubble Space Telescope photometry provide strong evidence for a supernova peaking about 12 rest-frame days after the GRB. The first spectrum ever obtained of a GRB supernova at cosmological distance revealed a blue continuum. SN 2001ke was more blue near maximum than SN 1998bw and faded more quickly which demonstrates that a range of properties are possible in supernovae which generate GRB. The blue color is consistent with a supernova interacting with circumstellar gas and this progenitor wind is also evident in the optical afterglow. This is the best evidence to date that classical, long gamma-ray bursts are generated by core-collapse supernovae.

Research paper thumbnail of OGLE2003-BLG-262: Finite-Source Effects from a Point-Mass Lens

Astrophysical Journal, 2004

Research paper thumbnail of Microlensing Optical Depth toward the Galactic Bulge Using Bright Sources from OGLE-II

Astrophysical Journal, 2006

We present a measurement of the microlensing optical depth toward the Galactic Bulge based on 4 y... more We present a measurement of the microlensing optical depth toward the Galactic Bulge based on 4 years of the OGLE-II survey using Red Clump Giant (RCG). Using 32 events we find tau=2.55_{-0.46}^{+0.57}* 10^{-6} at (l,b)=(1.16, -2.75). Taking into account the measured gradient along the Galactic latitude b, tau = [ (4.48+/- 2.37) + (0.78+/- 0.84)* b]* 10^{-6}, this value is consistent with previous measurements using RCG sources and recent theoretical predictions. We determine the microlensing parameters and select events using a model light curve with the flux blending. We find that ~38% of the OGLE-II events which appear to have RCG sources are actually due to much fainter stars blended with a bright companion. We show explicitly that model fits without blending result in similar tau estimates through partial cancellation of contributions from higher detection efficiency, underestimated time-scales and larger number of selected events. This approach, however, leads to biased time-scale distributions and event rates. Consequently, microlensing studies should carefully consider source confusion effects even for bright stars.

Research paper thumbnail of WR 20a Is an Eclipsing Binary: Accurate Determination of Parameters for an Extremely Massive Wolf-Rayet System

Astrophysical Journal, 2004

We present a high-precision I-band light curve for the Wolf-Rayet binary WR 20a, obtained as a su... more We present a high-precision I-band light curve for the Wolf-Rayet binary WR 20a, obtained as a sub-project of the Optical Gravitational Lensing Experiment. Rauw et al. have recently presented spectroscopy for this system, strongly suggesting extremely large minimum masses of 70.7 +/- 4.0 Mo and 68.8 +/- 3.8 Mo for the component stars of the system, with the exact values depending strongly on the period of the system. We detect deep eclipses of about 0.4 mag in the light curve of WR 20a, confirming and refining the suspected period of P=3.686 days and deriving an inclination angle of i=74.5 +/- 2 deg. Using these photometric data and the radial velocity data of Rauw et al., we derive the masses for the two components of WR 20a to be 83.0 +/- 5.0 Mo and 82.0 +/- 5.0 Mo. Therefore, WR 20a is confirmed to consist of two extremely massive stars and to be the most massive binary known with an accurate mass determination.

Research paper thumbnail of OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event

Astrophysical Journal, 2004

We present observations of the unusual microlensing event OGLE 2003-BLG-235/MOA 2003-BLG-53. In t... more We present observations of the unusual microlensing event OGLE 2003-BLG-235/MOA 2003-BLG-53. In this event a short duration (~7 days) low amplitude deviation in the light curve due a single lens profile was observed in both the MOA and OGLE survey observations. We find that the observed features of the light curve can only be reproduced using a binary microlensing model with an extreme (planetary) mass ratio of 0.0039 +/- (11, 07) for the lensing system. If the lens system comprises a main sequence primary, we infer that the secondary is a planet of about 1.5 Jupiter masses with an orbital radius of ~3 AU.

Research paper thumbnail of Microlensing Event MOA2007-BLG-400: Exhuming the Buried Signature of a Cool, Jovian-Mass Planet

Astrophysical Journal, 2009

We report the detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb. The planet was detect... more We report the detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb. The planet was detected in a high-magnification microlensing event (with peak magnification A_max = 628) in which the primary lens transited the source, resulting in a dramatic smoothing of the peak of the event. The angular extent of the region of perturbation due to the planet is significantly smaller than the angular size of the source, and as a result the planetary signature is also smoothed out by the finite source size. Thus the deviation from a single-lens fit is broad and relatively weak (~ few percent). Nevertheless, we demonstrate that the planetary nature of the deviation can be unambiguously ascertained from the gross features of the residuals, and detailed analysis yields a fairly precise planet/star mass ratio of q = 0.0026+/-0.0004, in accord with the large significance (\Delta\chi^2=1070) of the detection. The planet/star projected separation is subject to a strong close/wide degeneracy, leading to two indistinguishable solutions that differ in separation by a factor of ~8.5. Upper limits on flux from the lens constrain its mass to be M < 0.75 M_Sun (assuming it is a main-sequence star). A Bayesian analysis that includes all available observational constraints indicates a primary in the Galactic bulge with a mass of ~0.2-0.5 M_Sun and thus a planet mass of ~ 0.5-1.3 M_Jupiter. The separation and equilibrium temperature are ~0.6-1.1AU (~5.3-9.7AU) and ~103K (~34K) for the close (wide) solution. If the primary is a main-sequence star, follow-up observations would enable the detection of its light and so a measurement of its mass and distance.

Research paper thumbnail of Light and motion in SDSS Stripe 82: the catalogues

Monthly Notices of The Royal Astronomical Society, 2008

For each light-motion curve, 229 photometric and astrometric quantities are derived and stored in... more For each light-motion curve, 229 photometric and astrometric quantities are derived and stored in a higher-level catalogue. On the photometric side, these include mean exponential and PSF magnitudes along with uncertainties, RMS scatter, chi^2 per degree of freedom, various magnitude distribution percentiles, object type (stellar or galaxy), and eclipse, Stetson and Vidrih variability indices. On the astrometric side, these quantities include mean positions, proper motions as well as their uncertainties and chi^2 per degree of freedom. The here presented light-motion curve catalogue is complete down to r~21.5 and is at present the deepest large-area photometric and astrometric variability catalogue available.

Research paper thumbnail of A Cold Neptune-Mass Planet OGLE2007-BLG-368Lb: Cold Neptunes Are Common

Astrophysical Journal, 2010

We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a planet-star mass rat... more We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a planet-star mass ratio of q=[9.5 +/- 2.1] x 10^{-5} via gravitational microlensing. The planetary deviation was detected in real-time thanks to the high cadence of the MOA survey, real-time light curve monitoring and intensive follow-up observations. A Bayesian analysis returns the stellar mass and distance at M_l = 0.64_{-0.26}^{+0.21} M_\sun and D_l = 5.9_{-1.4}^{+0.9} kpc, respectively, so the mass and separation of the planet are M_p = 20_{-8}^{+7} M_\oplus and a = 3.3_{-0.8}^{+1.4} AU, respectively. This discovery adds another cold Neptune-mass planet to the planetary sample discovered by microlensing, which now comprise four cold Neptune/Super-Earths, five gas giant planets, and another sub-Saturn mass planet whose nature is unclear. The discovery of these ten cold exoplanets by the microlensing method implies that the mass ratio function of cold exoplanets scales as dN_{\rm pl}/d\log q \propto q^{-0.7 +/- 0.2} with a 95% confidence level upper limit of n < -0.35 (where dN_{\rm pl}/d\log q \propto q^n). As microlensing is most sensitive to planets beyond the snow-line, this implies that Neptune-mass planets are at least three times more common than Jupiters in this region at the 95% confidence level.

Research paper thumbnail of Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing

Science, 2008

Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet... more Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of ~0.71 and ~0.27 times the mass of Jupiter and orbital separations of ~2.3 and ~4.6 astronomical units orbiting a primary star of mass ~0.50 solar masses at a distance of ~1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

Research paper thumbnail of A Jovian-Mass Planet in Microlensing Event OGLE2005-BLG-071

Astrophysical Journal, 2005

We report the discovery of a several-Jupiter mass planetary companion to the primary lens star in... more We report the discovery of a several-Jupiter mass planetary companion to the primary lens star in microlensing event OGLE-2005-BLG-071. Precise (<1%) photometry at the peak of the event yields an extremely high signal-to-noise ratio detection of a deviation from the light curve expected from an isolated lens. The planetary character of this deviation is easily and unambiguously discernible from the gross features of the light curve. Detailed modeling yields a tightly-constrained planet-star mass ratio of q=m_p/M=0.0071+/-0.0003. This is the second robust detection of a planet with microlensing, demonstrating that the technique itself is viable and that planets are not rare in the systems probed by microlensing, which typically lie several kpc toward the Galactic center.

Research paper thumbnail of Discovery of a cool planet of 5.5 Earth masses through gravitationalmicrolensing

Research paper thumbnail of Microlens OGLE2005-BLG-169 Implies That Cool Neptune-like Planets Are Common

Astrophysical Journal, 2006

Research paper thumbnail of OGLE2003-BLG-238: Microlensing Mass Estimate of an Isolated Star

Astrophysical Journal, 2004

Microlensing is the only known direct method to measure the masses of stars that lack visible com... more Microlensing is the only known direct method to measure the masses of stars that lack visible companions. In terms of microlensing observables, the mass is given by M=(c^2/4G)\tilde r_E \theta_E and so requires the measurement of both the angular Einstein radius, \theta_E, and the projected Einstein radius, \tilde r_E. Simultaneous measurement of these two parameters is extremely rare. Here we analyze OGLE-2003-BLG-238, a spectacularly bright (I_min=10.3), high-magnification (A_max = 170) microlensing event. Pronounced finite source effects permit a measurement of \theta_E = 650 uas. Although the timescale of the event is only t_E = 38 days, one can still obtain weak constraints on the microlens parallax: 4.4 AU < \tilde r_E < 18 AU at the 1 \sigma level. Together these two parameter measurements yield a range for the lens mass of 0.36 M_sun < M < 1.48 M_sun. As was the case for MACHO-LMC-5, the only other single star (apart from the Sun) whose mass has been determined from its gravitational effects, this estimate is rather crude. It does, however, demonstrate the viability of the technique. We also discuss future prospects for single-lens mass measurements.

Research paper thumbnail of Frequency of Solar-like Systems and of Ice and Gas Giants Beyond the Snow Line from High-magnification Microlensing Events in 2005-2008

Astrophysical Journal, 2010

We present the first measurement of planet frequency beyond the "snow line" for planet/star mass-... more We present the first measurement of planet frequency beyond the "snow line" for planet/star mass-ratios[-4.5<log q<-2]: d^2 N/dlog q/dlog s=(0.36+-0.15)/dex^2 at mean mass ratio q=5e-4, and consistent with being flat in log projected separation, s. Our result is based on a sample of 6 planets detected from intensive follow-up of high-mag (A>200) microlensing events during 2005-8. The sample host stars have typical mass M_host 0.5 Msun, and detection is sensitive to planets over a range of projected separations (R_E/s_max,R_E*s_max), where R_E 3.5 AU sqrt(M_host/Msun) is the Einstein radius and s_max (q/5e-5)^{2/3}, corresponding to deprojected separations ~3 times the "snow line". Though frenetic, the observations constitute a "controlled experiment", which permits measurement of absolute planet frequency. High-mag events are rare, but the high-mag channel is efficient: half of high-mag events were successfully monitored and half of these yielded planet detections. The planet frequency derived from microlensing is a factor 7 larger than from RV studies at factor ~25 smaller separations [2<P<2000 days]. However, this difference is basically consistent with the gradient derived from RV studies (when extrapolated well beyond the separations from which it is measured). This suggests a universal separation distribution across 2 dex in semi-major axis, 2 dex in mass ratio, and 0.3 dex in host mass. Finally, if all planetary systems were "analogs" of the Solar System, our sample would have yielded 18.2 planets (11.4 "Jupiters", 6.4 "Saturns", 0.3 "Uranuses", 0.2 "Neptunes") including 6.1 systems with 2 or more planet detections. This compares to 6 planets including one 2-planet system in the actual sample, implying a first estimate of 1/6 for the frequency of solar-like systems.

Research paper thumbnail of A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA2007-BLG-192

Astrophysical Journal, 2008

We report the detection of an extrasolar planet of mass ratio q ~ 2 x 10^(-4) in microlensing eve... more We report the detection of an extrasolar planet of mass ratio q ~ 2 x 10^(-4) in microlensing event MOA-2007-BLG-192. The best fit microlensing model shows both the microlensing parallax and finite source effects, and these can be combined to obtain the lens masses of M = 0.060 (+0.028 -0.021) M_sun for the primary and m = 3.3 (+4.9 -1.6) M_earth for the planet. However, the observational coverage of the planetary deviation is sparse and incomplete, and the radius of the source was estimated without the benefit of a source star color measurement. As a result, the 2-sigma limits on the mass ratio and finite source measurements are weak. Nevertheless, the microlensing parallax signal clearly favors a sub-stellar mass planetary host, and the measurement of finite source effects in the light curve supports this conclusion. Adaptive optics images taken with the Very Large Telescope (VLT) NACO instrument are consistent with a lens star that is either a brown dwarf or a star at the bottom of the main sequence. Follow-up VLT and/or Hubble Space Telescope (HST) observations will either confirm that the primary is a brown dwarf or detect the low-mass lens star and enable a precise determination of its mass. In either case, the lens star, MOA-2007-BLG-192L, is the lowest mass primary known to have a companion with a planetary mass ratio, and the planet, MOA-2007-BLG-192Lb, is probably the lowest mass exoplanet found to date, aside from the lowest mass pulsar planet.

Research paper thumbnail of Microlens OGLE2005-BLG-169 Implies Cool Neptune-Like Planets are Common

We detect a Neptune mass-ratio (q~8e-5) planetary companion to the lens star in the extremely hig... more We detect a Neptune mass-ratio (q~8e-5) planetary companion to the lens star in the extremely high-magnification (A~800) microlensing event OGLE-2005-BLG-169. If the parent is a main-sequence star, it has mass M~0.5 M_sun implying a planet mass of ~13 M_earth and projected separation of ~2.7 AU. When intensely monitored over their peak, high-magnification events similar to OGLE-2005-BLG-169 have nearly complete sensitivity to Neptune mass-ratio planets with projected separations of 0.6 to 1.6 Einstein radii, corresponding to 1.6--4.3 AU in the present case. Only two other such events were monitored well enough to detect Neptunes, and so this detection by itself suggests that Neptune mass-ratio planets are common. Moreover, another Neptune was recently discovered at a similar distance from its parent star in a low-magnification event, which are more common but are individually much less sensitive to planets. Combining the two detections yields 90% upper and lower frequency limits f=0.37^{+0.30}_{-0.21} over just 0.4 decades of planet-star separation. In particular, f>16% at 90% confidence. The parent star hosts no Jupiter-mass companions with projected separations within a factor 5 of that of the detected planet. The lens-source relative proper motion is \mu~7--10 mas/yr, implying that if the lens is sufficiently bright, I<23.8, it will be detectable by HST by 3 years after peak. This would permit a more precise estimate of the lens mass and distance, and so the mass and projected separation of the planet. Analogs of OGLE-2005-BLG-169Lb orbiting nearby stars would be difficult to detect by other methods of planet detection, including radial velocities, transits, or astrometry.

Research paper thumbnail of Search for Low-Mass Exoplanets by Gravitational Microlensing at High Magnification

Science, 2004

Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presen... more Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presented for which the peak magnification was over 500, the highest yet reported. Continuous observations around the peak enabled a sensitive search for planets orbiting the lens star. No planets were detected. Planets 1.3 times heavier than Earth were excluded from more than 50 % of the projected annular region from approximately 2.3 to 3.6 astronomical units surrounding the lens star, Uranus-mass planets from 0.9 to 8.7 astronomical units, and planets 1.3 times heavier than Saturn from 0.2 to 60 astronomical units. These are the largest regions of sensitivity yet achieved in searches for extrasolar planets orbiting any star.

Research paper thumbnail of Removing the Microlensing Blending-Parallax Degeneracy Using Source Variability

Astrophysical Journal, 2006

Microlensing event MACHO 97-SMC-1 is one of the rare microlensing events for which the source is ... more Microlensing event MACHO 97-SMC-1 is one of the rare microlensing events for which the source is a variable star, simply because most variable stars are systematically eliminated from microlensing studies. Using observational data for this event, we show that the intrinsic variability of a microlensed star is a powerful tool to constrain the nature of the lens by breaking the degeneracy between the microlens parallax and the blended light. We also present a statistical test for discriminating the location of the lens based on the \chi^2 contours of the vector \Lambda, the inverse of the projected velocity. We find that while SMC self lensing is somewhat favored over halo lensing, neither location can be ruled out with good confidence.

Research paper thumbnail of Potential Direct Single-Star Mass Measurement

Astrophysical Journal, 2004

Research paper thumbnail of The Optical Gravitational Lensing Experiment. Catalog of RR Lyr Stars in the Large Magellanic Cloud

Acta Astronomica, 2003

We also provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, ... more We also provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, NGC 1835, hosts 84 RR Lyr variables.

Research paper thumbnail of Discovery of the Low-Redshift Afterglow of GRB 011121 and Its Progenitor Supernova 2001ke

We present the discovery and follow-up observations of the afterglow of the GRB 011121 and its as... more We present the discovery and follow-up observations of the afterglow of the GRB 011121 and its associated supernova SN 2001ke. Images were obtained with the OGLE 1.3m telescope in BVRI passbands, starting 10.3 hours after the burst. The temporal analysis of our early data indicates a steep decay, independent of wavelength with power-law index alpha=-1.72+/-0.05. There is no evidence for a break in the light curve earlier than 2.5 days after the burst. The spectral energy distribution determined from the early broad-band photometry is a power-law with index beta=-0.66+/-0.13 after correcting for a large reddening. Spectra, obtained with the Magellan 6.5m Baade telescope, reveal narrow emission lines from the host galaxy which provide a redshift of z=0.362+/-0.001 to the GRB. We also present late R and J-band observations of the afterglow between 7-17 days after the burst. The late-time photometry shows a large deviation from the initial decline and our data combined with Hubble Space Telescope photometry provide strong evidence for a supernova peaking about 12 rest-frame days after the GRB. The first spectrum ever obtained of a GRB supernova at cosmological distance revealed a blue continuum. SN 2001ke was more blue near maximum than SN 1998bw and faded more quickly which demonstrates that a range of properties are possible in supernovae which generate GRB. The blue color is consistent with a supernova interacting with circumstellar gas and this progenitor wind is also evident in the optical afterglow. This is the best evidence to date that classical, long gamma-ray bursts are generated by core-collapse supernovae.

Research paper thumbnail of OGLE2003-BLG-262: Finite-Source Effects from a Point-Mass Lens

Astrophysical Journal, 2004

Research paper thumbnail of Microlensing Optical Depth toward the Galactic Bulge Using Bright Sources from OGLE-II

Astrophysical Journal, 2006

We present a measurement of the microlensing optical depth toward the Galactic Bulge based on 4 y... more We present a measurement of the microlensing optical depth toward the Galactic Bulge based on 4 years of the OGLE-II survey using Red Clump Giant (RCG). Using 32 events we find tau=2.55_{-0.46}^{+0.57}* 10^{-6} at (l,b)=(1.16, -2.75). Taking into account the measured gradient along the Galactic latitude b, tau = [ (4.48+/- 2.37) + (0.78+/- 0.84)* b]* 10^{-6}, this value is consistent with previous measurements using RCG sources and recent theoretical predictions. We determine the microlensing parameters and select events using a model light curve with the flux blending. We find that ~38% of the OGLE-II events which appear to have RCG sources are actually due to much fainter stars blended with a bright companion. We show explicitly that model fits without blending result in similar tau estimates through partial cancellation of contributions from higher detection efficiency, underestimated time-scales and larger number of selected events. This approach, however, leads to biased time-scale distributions and event rates. Consequently, microlensing studies should carefully consider source confusion effects even for bright stars.

Research paper thumbnail of WR 20a Is an Eclipsing Binary: Accurate Determination of Parameters for an Extremely Massive Wolf-Rayet System

Astrophysical Journal, 2004

We present a high-precision I-band light curve for the Wolf-Rayet binary WR 20a, obtained as a su... more We present a high-precision I-band light curve for the Wolf-Rayet binary WR 20a, obtained as a sub-project of the Optical Gravitational Lensing Experiment. Rauw et al. have recently presented spectroscopy for this system, strongly suggesting extremely large minimum masses of 70.7 +/- 4.0 Mo and 68.8 +/- 3.8 Mo for the component stars of the system, with the exact values depending strongly on the period of the system. We detect deep eclipses of about 0.4 mag in the light curve of WR 20a, confirming and refining the suspected period of P=3.686 days and deriving an inclination angle of i=74.5 +/- 2 deg. Using these photometric data and the radial velocity data of Rauw et al., we derive the masses for the two components of WR 20a to be 83.0 +/- 5.0 Mo and 82.0 +/- 5.0 Mo. Therefore, WR 20a is confirmed to consist of two extremely massive stars and to be the most massive binary known with an accurate mass determination.