All parameters are supported except: warm_start = True ccp_alpha != 0 criterion != ‘gini’
Multi-output and sparse data are not supported
KNeighborsClassifier
For algorithm == ‘kd_tree’: all parameters except metric != ‘euclidean’ or ‘minkowski’ with p != 2 For algorithm == ‘brute’: all parameters except metric not in [‘euclidean’, ‘manhattan’, ‘minkowski’, ‘chebyshev’, ‘cosine’]
Multi-output and sparse data are not supported
LogisticRegression
All parameters are supported except: solver not in [‘lbfgs’, ‘newton-cg’] class_weight != None sample_weight != None
For algorithm == ‘kd_tree’: all parameters except metric != ‘euclidean’ or ‘minkowski’ with p != 2 For algorithm == ‘brute’: all parameters except metric not in [‘euclidean’, ‘manhattan’, ‘minkowski’, ‘chebyshev’, ‘cosine’]
All parameters are supported except: kernel = ‘sigmoid_poly’ class_weight != None
Only binary dense data is supported
RandomForestClassifier
All parameters are supported except: warm_start = True ccp_alpha != 0 criterion != ‘gini’ oob_score = True sample_weight != None
Multi-output and sparse data are not supported
KNeighborsClassifier
All parameters are supported except: algorithm != ‘brute’ weights = ‘callable’ metric not in [‘euclidean’, ‘manhattan’, ‘minkowski’, ‘chebyshev’, ‘cosine’]
Only dense data is supported
LogisticRegression
All parameters are supported except: solver != ‘newton-cg’ class_weight != None sample_weight != None penalty != ‘l2’
All parameters are supported except: algorithm != ‘brute’ weights = ‘callable’ metric not in [‘euclidean’, ‘manhattan’, ‘minkowski’, ‘chebyshev’, ‘cosine’]
All parameters are supported except: warm_start = True ccp_alpha != 0 criterion != ‘gini’ oob_score = True sample_weight != None
Multi-output and sparse data are not supported
KNeighborsClassifier
All parameters are supported except: algorithm != ‘brute’ weights = ‘callable’ metric not in [‘euclidean’, ‘manhattan’, ‘minkowski’, ‘chebyshev’, ‘cosine’] predict_proba method not supported
Only dense data is supported
LogisticRegression
All parameters are supported except: solver != ‘newton-cg’ class_weight != None sample_weight != None penalty != ‘l2’
All parameters are supported except: algorithm != ‘brute’ weights = ‘callable’ metric not in [‘euclidean’, ‘manhattan’, ‘minkowski’, ‘chebyshev’, ‘cosine’]