Steve Goodbred | Vanderbilt University (original) (raw)
Papers by Steve Goodbred
Remote Sensing of Environment, 2009
The lithologic composition and grain size distribution of sediments are primary determinants of t... more The lithologic composition and grain size distribution of sediments are primary determinants of their inherent reflectance properties. However, moisture content is also known to have a strong influence on reflectances of soils and sediments. If the effects of sediment composition, ...
Annual Review of Marine Science, 2015
We present a review of the processes, morphology, and stratigraphy of the Ganges-Brahmaputra-Megh... more We present a review of the processes, morphology, and stratigraphy of the Ganges-Brahmaputra-Meghna delta (GBMD), including insights gained from detailed elevation data. The review shows that the GBMD is best characterized as a composite system, with different regions having morphologic and stratigraphic attributes of an upland fluvial fan delta; a lowland, backwater-reach delta; a downdrift tidal delta plain; and an offshore subaqueous-delta clinoform. These distinct areas of upland and lowland fluvial reaches and tidal dominance vary in time and space, and we distinguish late-Holocene phases of delta construction, maintenance, and decline similar to delta-lobe cycling in other systems. The overall stability of the GBMD landform, relative to many deltas, reflects the efficient, widespread dispersal of sediment by the large monsoon discharge and high-energy tides that affect this region. However, we do identify portions of the delta that are in decline and losing elevation relative to sea level owing to insufficient sediment delivery. These areas, some of which are well inland of the coast, represent those most at risk to the continued effect of sea-level rise.
Chemical Geology, 2006
A new sampling device was used to obtain 8 detailed profiles of groundwater and associated sedime... more A new sampling device was used to obtain 8 detailed profiles of groundwater and associated sediment properties to ∼30 m depth in a 4 km2 area of Bangladesh that is characterized by high spatial variability in groundwater As. Concentrations of dissolved As, Fe, and Mn ranged from <0.1 to 600 μg/L, <0.1 to 18 mg/L, and <0.1 to 4 mg/L,
Geochemical Transactions
To identify the causes of salinization and arsenic contamination of surface water on an embanked ... more To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element concentrations show that all surface water types lie on mixing lines between dry season tidal channel water and rainwater, i.e., all are related by varying degrees of salinization. High As concentrations in dry season tidal channel water and shrimp ponds likely result from groundwater exfiltration and upstream irrigation in the dry season. Arsenic is transferred from tidal channels to rice paddies through irrigation. Including groundwater samples from the same area (Ayers et al. in Geochem Trans 17:1-22, 2016), principal components analysis and correlation analysis reveal that salinization explains most variation in surface water compositions, whereas progressive reduction of buried surface water by dissolved organic carbon is responsible for the nonconservative behavior of S, Fe, and As and changes in Eh and alkalinity of groundwater.
Geochemical Transactions, 2016
Background: High salinity and arsenic (As) concentrations in groundwater are widespread problems ... more Background: High salinity and arsenic (As) concentrations in groundwater are widespread problems in the tidal deltaplain of southwest Bangladesh. To identify the sources of dissolved salts and As, groundwater samples from the regional shallow Holocene aquifer were collected from tubewells during the dry (May) and wet (October) seasons in 2012-2013. Thirteen drill cores were logged and 27 radiocarbon ages measured on wood fragments to characterize subsurface stratigraphy. Results: Drill cuttings, exposures in pits and regional studies reveal a >5 m thick surface mud cap overlying a ~30 m thick upper unit of interbedded mud and fine sand layers, and a coarser lower unit up to 60 m thick dominated by clean sands, all with significant horizontal variation in bed continuity and thickness. This thick lower unit accreted at rates of ~2 cm/year through the early Holocene, with local subsidence or compaction rates of 1-3 mm/year. Most tubewells are screened at depths of 15-52 m in sediments deposited 8000-9000 YBP. Compositions of groundwater samples from tubewells show high spatial variability, suggesting limited mixing and low and spatially variable recharge rates and flow velocities. Groundwaters are Na-Cl type and predominantly sulfate-reducing, with specific conductivity (SpC) from 3 to 29 mS/cm, high dissolved organic carbon (DOC) 11-57 mg/L and As 2-258 ug/L, and low sulfur (S) 2-33 mg/L. Conclusions: Groundwater compositions can be explained by burial of tidal channel water and subsequent reaction with dissolved organic matter, resulting in anoxia, hydrous ferric oxide (HFO) reduction, As mobilization, and sulfate (SO 4) reduction and removal in the shallow aquifer. Introduction of labile organic carbon in the wet season as rice paddy fertilizer may also cause HFO reduction and As mobilization. Variable modern recharge occurred in areas where the clay cap pinches out or is breached by tidal channels, which would explain previously measured 14 C groundwater ages being less than depositional ages. Of samples collected from the shallow aquifer, Bangladesh Government guidelines are exceeded in 46 % for As and 100 % for salinity.
International Journal of Environmental Health, 2016
National drinking water assessments for Bangladesh do not reflect local variability, or temporal ... more National drinking water assessments for Bangladesh do not reflect local variability, or temporal differences. This paper reports on the findings of an interdisciplinary investigation of drinking water insecurity in a rural coastal southwestern Bangladesh. Drinking water quality is assessed by comparison of locally measured concentrations to national levels and water quality criteria; resident's access to potable water and their perceptions are based on local social surveys. Residents in the study area use groundwater far less than the national average; salinity and local rainwater scarcity necessitates the use of multiple water sources throughout the year. Groundwater concentrations of arsenic and specific conductivity (SpC) were greater than surface water (pond) concentrations; there was no statistically significant seasonal difference in mean concentrations in groundwater, but there was for ponds, with arsenic higher in the dry season. Average arsenic concentrations in local water drinking were 2-4 times times the national average. All of the local groundwater samples exceeded the Bangladesh guidance for SpC, although the majority of residents surveyed did not perceive their water as having a 'bad' or 'salty' taste.
Elementa - Science of the Anthropocene, 2017
Wilson, C, et al. 2017 Widespread infilling of tidal channels and navigable waterways in the huma... more Wilson, C, et al. 2017 Widespread infilling of tidal channels and navigable waterways in the human-modified tidal deltaplain of southwest Bangladesh. Since the 1960s, ~5000 km 2 of tidal deltaplain in southwest Bangladesh has been embanked and converted to densely inhabited, agricultural islands (i.e., polders). This landscape is juxtaposed to the adjacent Sundarbans, a pristine mangrove forest, both well connected by a dense network of tidal channels that effectively convey water and sediment throughout the region. The extensive embanking in poldered areas, however, has greatly reduced the tidal prism (i.e., volume of water) transported through local channels. We reveal that >600 km of these major waterways have infilled in recent decades, converting to land through enhanced sedimentation and the direct blocking of waterways by embankments and sluice gates. Nearly all of the observed closures (~98%) have occurred along the embanked polder systems, with no comparable changes occurring in channels of the Sundarbans (<2% change). We attribute most of the channel infilling to the local reduction of tidal prism in poldered areas and the associated decline in current velocities. The infilled channels account for ~90 km 2 of new land in the last 40-50 years, the rate of which, ~2 km 2 /yr, offsets the 4 km 2 /yr that is eroded at the coast, and is equivalent to ~20% of the new land produced naturally at the Ganges-Brahmaputra tidal rivermouth. Most of this new land, called 'khas' in Bengali, has been reclaimed for agriculture or aquaculture, contributing to the local economy. However, benefits are tempered by the loss of navigable waterways for commerce, transportation, and fishing, as well as the forced rerouting of tidal waters and sediments necessary to sustain this low-lying landscape against rising sea level. A more sustainable delta will require detailed knowledge of the consequences of these hydrodynamic changes to support more scientifically-grounded management of water, sediment, and tidal energy distribution.
Quaternary Geochronology, 2017
Deltas where luminescence dating is most essential due to organic-poor geologic records are also ... more Deltas where luminescence dating is most essential due to organic-poor geologic records are also those where it is often most challenging due to unsuitable luminescence properties of quartz grains, associated with rapid production of young clastic sediment. One example is the Ganges-Brahmaputra-Meghna Delta (GBMD), where Himalaya uplift drives erosion, production, and delivery to the delta plain of poorly sensitized quartz sand. Luminescence dating of fluvial deposits may be further complicated by partial bleaching prior to deposition. Here, we use GBMD quartz and polymineral sediment, including sand and silt fractions, with constrained depositional ages between a few years and a few centuries to test novel approaches to luminescence dating of fluvial deposits in an otherwise challenging setting. This produces the first delta-wide assessment of GBMD sediment luminescence dateability. We use a new multiple-signal SAR (MS-SAR) bleaching index (BI) to explore zeroing of the luminescence signals of sediment prior to deposition and to quantify the IR, pIRIR, and TL residual doses of GBMD polymineral silt with well-reset BSL signals. This test establishes BI values that can be used to identify sufficient bleaching of Holocene sediment with unknown depositional ages, thereby improving confidence in quartz silt dating. We find that GBMD quartz sand is unsuitable for luminescence dating in most localities. By contrast, GBMD silt is sufficiently bleached and has universally suitable luminescence characteristics, enabling dating of GBMD deposits up to the Last Glacial Maximum. Our findings in the GBMD establish methodology for obtaining and validating luminescence ages for fluvial deposits in challenging settings with unsuitable quartz sand.
Geochemical Transactions, 2017
To identify the causes of salinization and arsenic contamination of surface water on an embanked ... more To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element concentrations show that all surface water types lie on mixing lines between dry season tidal channel water and rainwater, i.e., all are related by varying degrees of salinization. High As concentrations in dry season tidal channel water and shrimp ponds likely result from groundwater exfiltration and upstream irrigation in the dry season. Arsenic is transferred from tidal channels to rice paddies through irrigation. Including groundwater samples from the same area (Ayers et al. in Geochem Trans 17:1-22, 2016), principal components analysis and correlation analysis reveal that salinization explains most variation in surface water compositions, whereas progressive reduction of buried surface water by dissolved organic carbon is responsible for the nonconservative behavior of S, Fe, and As and changes in Eh and alkalinity of groundwater.
Basin Research, 2018
The Holocene stratigraphy of Sylhet basin, a tectonically influenced sub-basin within the Ganges-... more The Holocene stratigraphy of Sylhet basin, a tectonically influenced sub-basin within the Ganges-Brahmaputra-Meghna delta (GMBD), provides evidence for autogenic and allogenic controls on fluvial system behaviour. Using Holocene lithology and stratigraphic architecture from a dense borehole network, patterns of bypass-dominated and extraction-enhanced modes of sediment transport and deposition have been reconstructed. During a ~3-kyr mid-Holocene occupation of Sylhet basin by the Brahmaputra River, water and sediment were initially (~7.5-6.0 ka) routed along the basin's western margin, where limited downstream facies changes reflect minimal mass extraction and bypass-dominated transport to the basin outlet. Sediment-dispersal patterns became increasingly depositional ~6.0-5.5 ka with the activation of a large (~2250 km 2) splay that prograded towards the basin centre while maintaining continued bypass along the western pathway. Beginning ~5.0 ka, a second splay system constructed an even larger (~3800 km 2) lobe into the most distal portions of the basin along the Shillong foredeep. This evolution from a bypass-dominated system to one of enhanced mass extraction is well reflected in (i) the rapid downstream fining of deposited sand and (ii) a change in facies from amalgamated channel deposits to mixed sands and muds within discrete depositional lobes. The persistence of sediment bypass suggests that seasonal flooding of the basin by local runoff exerts a hydrologic barrier to overbank flow and is thus a principal control on river path selection. This control is evidenced by (i) repeated, long-term preference for occupying a course along the basin margin rather than a steeper path to the basin centre and (ii) the persistence of an under-filled, topographically low basin despite sediment load sufficient to fill the basin within a few hundred years. The progradation of two 10-20-m thick, sandy mega-splays into the basin interior reflects an alternative mode of sediment dispersal that appears to have operated only in the mid-Holocene (~6.0-4.0 ka) during a regional weakening of the summer monsoon. The reduced water budget at that time would have lowered seasonal water levels in the basin, temporarily lessening the hydrologic barrier effect and facilitating splay development into the basin interior. Overall, these results place basin hydrology as a first-order control on fluvial system behaviour, strongly modifying the perceived dominance of tectonic subsidence. Such coupling of subsidence , fluvial dynamics and local hydrology have been explored through tank experiments and modelling; this field study demonstrates that complex, emergent behaviours can also scale to the world's largest fluvial system.
Science Advances, 2017
Simple pebble tools, ephemeral cultural features, and the remains of maritime and terrestrial foo... more Simple pebble tools, ephemeral cultural features, and the remains of maritime and terrestrial foods are present in undisturbed Late Pleistocene and Early Holocene deposits underneath a large human-made mound at Huaca Prieta and nearby sites on the Pacific coast of northern Peru. Radiocarbon ages indicate an intermittent human presence dated between ~15,000 and 8000 calendar years ago before the mound was built. The absence of fishhooks, harpoons, and bifacial stone tools suggests that technologies of gathering, trapping, clubbing, and exchange were used primarily to procure food resources along the shoreline and in estuarine wetlands and distant mountains. The stone artifacts are minimally worked unifacial stone tools characteristic of several areas of South America. Remains of avocado, bean, and possibly cultivated squash and chile pepper are also present, suggesting human transport and consumption. Our new findings emphasize an early coastal lifeway of diverse food procurement strategies that suggest detailed observation of resource availability in multiple environments and a knowledgeable economic organization, although technologies were simple and campsites were seemingly ephemeral and discontinuous. These findings raise questions about the pace of early human movement along some areas of the Pacific coast and the level of knowledge and technology required to exploit maritime and inland resources.
Basin Research, 2018
Floodplains, paleosols, and antecedent landforms near the apex of the Brahmaputra fan delta in no... more Floodplains, paleosols, and antecedent landforms near the apex of the Brahmaputra fan delta in north-central Bangladesh preserve cycles of fluvial sediment deposition, erosion and weathering. Together these landforms and their associated deposits comprise morphostratigraphic units that define the river's history and have influenced its channel position and avulsion behaviour through the Late Quaternary. Previously, temporal differentiation within these units has not been sufficient to decipher their sequence of deposition, an important step in understanding the spatial pattern of migration of the Brahmaputra River. Holocene units in this region are fairly well established by radiocarbon dating of in situ organic material, but pre-Holocene units are considered Pleistocene-aged if organic material is dated >48 000 year BP (the limit of radiocarbon dating) or the sediments are positioned beneath a prominent paleosol, interpreted as a buried soil horizon that developed during a previous sea level lowstand. In such cases, these morphostratigraphic units have been broadly interpreted as Pleistocene without knowing their absolute depositional ages or relative evolutionary chronology. Here we use detailed sediment analysis to better differentiate morphostratigraphic units at the Brahmaputra's avulsion node, establishing the sequence of deposition and subsequent weathering of these bodies. We then test this relative chronology by luminescence dating of the sands beneath these landform surfaces. This work provides the first absolute depositional age constraints of terrace sediments for the Middle to Late Pleistocene Brahmaputra River and upper Bengal basin. The luminescence ages are complemented by detailed compositional trends in the terrace deposits, including clay mineralogy and the degree of weathering. Together, these newly dated and carefully described morphostratigraphic units reflect eustasy-driven cycles of terrace development by way of highstand floodplain deposition and subsequent lowstand exposure and weathering, along with active tectonic deformation. Defining this Late Quaternary history of terrace development and position of the Brahmaputra River is a first step toward an integrated understanding of basin and delta evolution over multiple glacioeustatic cycles and tectonically relevant timescales.
Earth and Planetary Science Letters, 2018
Relative sea level history, which is the result of the combined effects of land subsidence, sedim... more Relative sea level history, which is the result of the combined effects of land subsidence, sediment supply and absolute sea level history may be reconstructed from preserved sediment thicknesses. However, variations in the preserved sediment thicknesses between different sedimentary environments strongly limit the accuracy of this type of geological approach, particularly in fluvial channelized systems, such as delta plains. To address this, we apply three different and independent stratigraphic approaches to the case of the Ganges-Brahmaputra-Meghna Delta (GBMD). Our approach has been made possible by a broad dataset of geological archives we have collected, which includes more than 400 hand-drilled stratigraphic wells, 198 radiocarbon ages, and river seismic reflection data (255 km of high-resolution multichannel seismic images). The seaward gradient of accommodation and the limit of the subsiding delta plain are estimated, assuming that the delta is near or at the base-level, which is considered to be the relative sea-level. First, a statistical analysis of the variability of preserved sediment thicknesses is used to derive the average pattern of accommodation from the Holocene isopach. Secondly, the preserved sediment thicknesses are analyzed by geomorphotectonic domains to estimate an average pattern of accommodation. Thirdly, the burial history of the seismically imaged last glacial incision of the Brahmaputra River is reconstructed. Results suggest that the variability of preserved sediment thicknesses can be up to 35% in a delta plain between river channel and flood plain deposits for the same relative sea-level history. Taking this variability into consideration, the Holocene relative sea-level history of the GBMD and the most likely pattern of subsidence are determined. Results provide evidence of moderate Holocene subsidence over the delta, gently increasing seaward from <0.2 mm/yr landward of the Hinge Zone, which can be considered as the northern limit of the subsiding delta plain, to 2 ± 0.7 mm/yr in the middle fluvial delta to 4 ± 1.4 mm/yr in the lower tidal delta. This enables us to construct the first millennial-scale map of subsidence pattern on the GBMD in which uncertainties on subsidence rates are provided. This map may aid in evaluating the negative impact that human modification may have on subsidence and relative sea level in the GBMD, and thereby help to determine better sustainable coastal management practices for the GBMD and other large delta plains.
Earth-Science Reviews, 2018
River channel confluences are widely acknowledged as important geomorphological nodes that contro... more River channel confluences are widely acknowledged as important geomorphological nodes that control the downstream routing of water and sediment, and which are locations for the preservation of thick fluvial deposits overlying a basal scour. Despite their importance, there has been little study of the stratigraphic characteristics of river junctions, or the role of confluence morphodynamics in influencing stratigraphic character and preservation potential. As a result, although it is known that confluences can migrate through time, models of confluence geomorphology and sedimentology are usually presented from the perspective that the confluence remains at a fixed location. This is problematic for a number of reasons, not least of which is the continuing debate over whether it is possible to discriminate between scour that has been generated by autocyclic processes (such as confluence scour) and that driven by allocyclic controls (such as sea-level change). This paper investigates the spatial mobility of river confluences by using the 40-year record of Landsat Imagery to elucidate the styles, rates of change and areal extent over which large river confluence scours may migrate. On the basis of these observations, a new classification of the types of confluence scour is proposed and applied to the Amazon and Ganges-Brahmaputra-Meghna (GBM) basins. This analysis demonstrates that the drivers of confluence mobility are broadly the same as those that drive channel change more generally. Thus in the GBM basin, a high sediment supply, large variability in monsoonal driven discharge and easily erodible bank materials result in a catchment where over 80% of large confluences are mobile over this 40-year window; conversely this figure is < 40% for the Amazon basin. These results highlight that: i) the potential areal extent of confluence scours is much greater than previously assumed, with the location of some confluences on the Jamuna (Brahmaputra) River migrating over a distance of 20 times the tributary channel width; ii) extensive migration in the confluence location is more common than currently assumed, and iii) confluence mobility is often tied to the lithological and hydrological characteristics of the drainage basins that determine sediment yield.
Geophysical Research Letters, 2018
The contribution of subsidence to relative sea level rise in the Ganges-Brahmaputra delta (GBD) i... more The contribution of subsidence to relative sea level rise in the Ganges-Brahmaputra delta (GBD) is largely unknown and may considerably enhance exposure of the Bengal Basin populations to sea level rise and storm surges. This paper focuses on estimating the present-day subsidence induced by Holocene sediment in the Bengal Basin and by oceanic loading due to eustatic sea level rise over the past 18 kyr. Using a viscoelastic Earth model and sediment deposition history based on in situ measurements, results suggest that massive sediment influx initiated in the early Holocene under a strengthened South Asian monsoon may have contributed significantly to the present-day subsidence of the GBD. We estimate that the Holocene loading generates up to 1.6 mm/yr of the present-day subsidence along the GBD coast, depending on the rheological model of the Earth. This rate is close to the twentieth century global mean sea level rise (1.1-1.7 mm/yr). Thus, past climate change, by way of enhanced sedimentation, is impacting vulnerability of the GBD populations. Plain Language Summary This paper estimates the land subsidence induced by sediments deposited in the Bengal Basin and by the sea level rise over the past 18,000 years. The results of numerical modeling demonstrate that the coast of the Ganges-Brahmaputra delta subsides at a rate of about 1-1.6 mm/yr depending on the lithospheric thickness and the Earth mantle viscosity. This is comparable to the rate of global mean sea level rise during the twentieth century. Thus, the intense sedimentation generated by climate changes in the past contributes significantly to the present-day subsidence of the Bengal coast.
Geological Society of America Bulletin, 2018
To better define the base of the Brahmaputra River paleovalley, we analyzed an extensive borehole... more To better define the base of the Brahmaputra River paleovalley, we analyzed an extensive borehole data set from the subaerial Bengal delta and a 255-km-long multichannel seismic survey along the modern river. The data reveal that the paleovalley floor is defined by a gravel unit containing boulder-sized clasts up to 30 cm in diameter, deposited after ca. 30 ka but before ca. 9 ka. Paleohydrology during that time and the previous glacial maximum was characterized by a weak monsoon and reduced river discharge, both of which are inconsistent with large valley formation. However, our work indicates that glacial-lake outburst floods sourced from the Tibetan reaches of the Brahmaputra were routed through the lowstand valley, producing megaflood-scale discharge capable of transporting gravel and cannibalizing the valley margins. The timing of these glacial-lake outburst flood–driven discharge events was coincident with valley development and explains the anomalously large width of the valley and basal gravel surface. Despite the underfit scale of Brahmaputra discharge following the last glacial period, a strengthening monsoon and high sediment discharge in the early Holocene subsequently contributed to the efficient infilling of the massive paleovalley by the mid-Holocene. In a sequence stratigraphic context, this work provides an example of a major unconformity that developed late in the eustatic cycle (i.e., during early transgression rather than an earlier, protracted response to sea-level lowering) and in response to a perturbation originating in the catchment instead of changing accommodation in the basin. As such, it represents a geologically instantaneous time surface that can be used as a marker for stratigraphic correlation but one that is not in phase with eustatic sea-level fall.
Earth Surface Dynamics, 2019
The landscape of southwest Bangladesh, a region constructed primarily by fluvial processes associ... more The landscape of southwest Bangladesh, a region constructed primarily by fluvial processes associated with the Ganges River and Brahmaputra River, is now maintained almost exclusively by tidal processes as the fluvial system has migrated east and eliminated the most direct fluvial input. In natural areas such as the Sundarbans National Forest, year-round inundation during spring high tides delivers sufficient sediment that enables vertical accretion to keep pace with relative sea-level rise. However, recent human modification of the landscape in the form of embankment construction has terminated this pathway of sediment delivery for much of the region, resulting in a startling elevation imbalance, with inhabited areas often sitting > 1 m below mean high water. Restoring this landscape, or preventing land loss in the natural system, requires an understanding of how rates of water and sediment flux vary across timescales ranging from hours to months. In this study, we combine time series observations of water level, salinity, and suspended sediment concentration with ship-based measurements of large tidal-channel hydrodynamics and sediment transport. To capture the greatest possible range of variability, cross-channel transects designed to encompass a 12.4 h tidal cycle were performed in both dry and wet seasons during spring and neap tides. Regional suspended sediment concentration begins to increase in August, coincident with a decrease in local salinity, indicating the arrival of the sediment-laden, freshwater plume of the combined Ganges-Brahmaputra-Meghna rivers. We observe profound seasonality in sediment transport, despite comparatively modest seasonal variability in the magnitude of water discharge. These observations emphasize the importance of seasonal sediment delivery from the main-stem rivers to this remote tidal region. On tidal timescales, spring tides transport an order of magnitude more sediment than neap tides in both the wet and dry seasons. In aggregate, sediment transport is flood oriented, likely as a result of tidal pumping. Finally, we note that rates of sediment and water discharge in the tidal channels are of the same scale as the annually averaged values for the Ganges and Brahmaputra rivers. These observations provide context for examining the relative importance of fluvial and tidal processes in what has been defined as a quintessentially tidally influenced delta in the classification scheme of Galloway (1975). These data also inform critical questions regarding the timing and magnitude of sediment delivery to the region, which are especially important in predicting and preparing for responses of the natural system to ongoing environmental change.
Earth Surface Processes and Landforms, 2019
Constraining time is of critical importance to evaluating the rates and relative contributions of... more Constraining time is of critical importance to evaluating the rates and relative contributions of processes driving landscape change in sedimentary basins. The geomorphic character of the field setting guides the application of geochronologic or instrumental tools to this problem, because the viability of methods can be highly influenced by geomorphic attributes. For example, sediment yield and the linked potential for organic preservation may govern the usefulness of radiocarbon dating. Similarly, the rate of sediment transport from source-tosink may determine the maturity and/or light exposure of mineral grains arriving in the delta and thus the feasibility of luminescence dating. Here, we explore the viability and quirks of dating and instrumental methods that have been applied in the Bengal Basin, and review the records that they have yielded. This immense, dynamic, and spatially variable system hosts the world's most inhabited delta. Outlining a framework for successful chronologic applications is thus of value to managing water and sediment resources for humans, here and in other populated deltas worldwide. Our review covers radiocarbon dating, luminescence dating, archaeological records and historical maps, short-lived radioisotopes, horizon markers and rod surface elevation tables, geodetic observations, and surface instrumentation.
Journal of Geophysical Research - Earth Surface, 2019
Quantitative interrogation of grain sizes in sedimentary systems has the potential to improve pre... more Quantitative interrogation of grain sizes in sedimentary systems has the potential to improve predictions of stratigraphic architecture, facies distributions, and downstream reservoir characteristics. To quantify these relationships, downstream fining data are coupled with rates of mass extraction, with input grain-size distribution, accommodation, and sediment input from multiple transport pathways providing primary controls on resulting sediment dispersal patterns. We spatially apportioned mass distribution along three sediment delivery pathways with distinct accommodation characteristics within the Ganges-Brahmaputra-Meghna Delta to calculate chi (í µí¼), the total fraction of supplied sediment flux lost to deposition at any given point. Low rates of downstream fining and sand-rich channel facies characterize a bypass-dominant pathway along the western margin of Sylhet basin, whereas two splay deposits that prograde into the underfilled basin interior exhibit higher rates of fining and preservation of mud-rich facies. Both splay deposits show a shift from sand-dominated to mixed sand and mud facies and increased mud preservation (above 30%) at a í µí¼ value of ∼0.8. No comparable increase in mud preservation occurs along the bypass-dominated pathway, suggesting that this course operated in an inherently different extraction mode due to limited mid-Holocene accommodation. A similarity solution model effectively reproduces most of the spatial patterns of mass extraction observed in Sylhet basin, except in one location receiving lateral sediment input from a distributary channel. These field and modeling results indicate that grain-size data and sediment volume measurements can be used to not only reconstruct paleodynamics of transport networks and resulting stratigraphy but also lead to predictive insights on subsurface heterogeneity, and thus improved reservoir and aquifer characterization.
Journal of Geophysical Research - Earth Surface, 2019
We examine variations in discharge exchange between two parallel, 1-to 2-km-wide tidal channels (... more We examine variations in discharge exchange between two parallel, 1-to 2-km-wide tidal channels (the Shibsa and the Pussur) in southwestern Bangladesh over spring-neap, and historical timescales. Our objective is to evaluate how large-scale, interconnected tidal channel networks respond to anthropogenic perturbation. The study area spans the boundary between the pristine Sundarbans Reserved Forest, where regular inundation of the intertidal platform maintains the fluvially abandoned delta plain, and the anthropogenically modified region to the north, where earthen embankments sequester large areas of formerly intertidal landscape. Estimates of tidal response to the embankment-driven reduction in basin volume, and hence tidal prism, predict a corresponding decrease in size of the mainstem Shibsa channel, yet the Shibsa is widening and locally scouring even as the interconnected Pussur channel faces rapid shoaling. Rather, the Shibsa has maintained or even increased its pre-polder tidal prism by capturing a large portion of the Pussur's basin via several "transverse" channels that are themselves widening and deepening. We propose that an enhanced tidal setup in the Pussur and the elimination of an effective Shibsa-Pussur flow barrier are driving this basin capture event. These results illustrate previously unrecognized channel interactions and emphasize the importance of flow reorganization in response to perturbations of interconnected, multichannel tidal networks that characterize several large tidal delta plains worldwide.
Remote Sensing of Environment, 2009
The lithologic composition and grain size distribution of sediments are primary determinants of t... more The lithologic composition and grain size distribution of sediments are primary determinants of their inherent reflectance properties. However, moisture content is also known to have a strong influence on reflectances of soils and sediments. If the effects of sediment composition, ...
Annual Review of Marine Science, 2015
We present a review of the processes, morphology, and stratigraphy of the Ganges-Brahmaputra-Megh... more We present a review of the processes, morphology, and stratigraphy of the Ganges-Brahmaputra-Meghna delta (GBMD), including insights gained from detailed elevation data. The review shows that the GBMD is best characterized as a composite system, with different regions having morphologic and stratigraphic attributes of an upland fluvial fan delta; a lowland, backwater-reach delta; a downdrift tidal delta plain; and an offshore subaqueous-delta clinoform. These distinct areas of upland and lowland fluvial reaches and tidal dominance vary in time and space, and we distinguish late-Holocene phases of delta construction, maintenance, and decline similar to delta-lobe cycling in other systems. The overall stability of the GBMD landform, relative to many deltas, reflects the efficient, widespread dispersal of sediment by the large monsoon discharge and high-energy tides that affect this region. However, we do identify portions of the delta that are in decline and losing elevation relative to sea level owing to insufficient sediment delivery. These areas, some of which are well inland of the coast, represent those most at risk to the continued effect of sea-level rise.
Chemical Geology, 2006
A new sampling device was used to obtain 8 detailed profiles of groundwater and associated sedime... more A new sampling device was used to obtain 8 detailed profiles of groundwater and associated sediment properties to ∼30 m depth in a 4 km2 area of Bangladesh that is characterized by high spatial variability in groundwater As. Concentrations of dissolved As, Fe, and Mn ranged from &amp;amp;amp;amp;amp;amp;amp;lt;0.1 to 600 μg/L, &amp;amp;amp;amp;amp;amp;amp;lt;0.1 to 18 mg/L, and &amp;amp;amp;amp;amp;amp;amp;lt;0.1 to 4 mg/L,
Geochemical Transactions
To identify the causes of salinization and arsenic contamination of surface water on an embanked ... more To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element concentrations show that all surface water types lie on mixing lines between dry season tidal channel water and rainwater, i.e., all are related by varying degrees of salinization. High As concentrations in dry season tidal channel water and shrimp ponds likely result from groundwater exfiltration and upstream irrigation in the dry season. Arsenic is transferred from tidal channels to rice paddies through irrigation. Including groundwater samples from the same area (Ayers et al. in Geochem Trans 17:1-22, 2016), principal components analysis and correlation analysis reveal that salinization explains most variation in surface water compositions, whereas progressive reduction of buried surface water by dissolved organic carbon is responsible for the nonconservative behavior of S, Fe, and As and changes in Eh and alkalinity of groundwater.
Geochemical Transactions, 2016
Background: High salinity and arsenic (As) concentrations in groundwater are widespread problems ... more Background: High salinity and arsenic (As) concentrations in groundwater are widespread problems in the tidal deltaplain of southwest Bangladesh. To identify the sources of dissolved salts and As, groundwater samples from the regional shallow Holocene aquifer were collected from tubewells during the dry (May) and wet (October) seasons in 2012-2013. Thirteen drill cores were logged and 27 radiocarbon ages measured on wood fragments to characterize subsurface stratigraphy. Results: Drill cuttings, exposures in pits and regional studies reveal a >5 m thick surface mud cap overlying a ~30 m thick upper unit of interbedded mud and fine sand layers, and a coarser lower unit up to 60 m thick dominated by clean sands, all with significant horizontal variation in bed continuity and thickness. This thick lower unit accreted at rates of ~2 cm/year through the early Holocene, with local subsidence or compaction rates of 1-3 mm/year. Most tubewells are screened at depths of 15-52 m in sediments deposited 8000-9000 YBP. Compositions of groundwater samples from tubewells show high spatial variability, suggesting limited mixing and low and spatially variable recharge rates and flow velocities. Groundwaters are Na-Cl type and predominantly sulfate-reducing, with specific conductivity (SpC) from 3 to 29 mS/cm, high dissolved organic carbon (DOC) 11-57 mg/L and As 2-258 ug/L, and low sulfur (S) 2-33 mg/L. Conclusions: Groundwater compositions can be explained by burial of tidal channel water and subsequent reaction with dissolved organic matter, resulting in anoxia, hydrous ferric oxide (HFO) reduction, As mobilization, and sulfate (SO 4) reduction and removal in the shallow aquifer. Introduction of labile organic carbon in the wet season as rice paddy fertilizer may also cause HFO reduction and As mobilization. Variable modern recharge occurred in areas where the clay cap pinches out or is breached by tidal channels, which would explain previously measured 14 C groundwater ages being less than depositional ages. Of samples collected from the shallow aquifer, Bangladesh Government guidelines are exceeded in 46 % for As and 100 % for salinity.
International Journal of Environmental Health, 2016
National drinking water assessments for Bangladesh do not reflect local variability, or temporal ... more National drinking water assessments for Bangladesh do not reflect local variability, or temporal differences. This paper reports on the findings of an interdisciplinary investigation of drinking water insecurity in a rural coastal southwestern Bangladesh. Drinking water quality is assessed by comparison of locally measured concentrations to national levels and water quality criteria; resident's access to potable water and their perceptions are based on local social surveys. Residents in the study area use groundwater far less than the national average; salinity and local rainwater scarcity necessitates the use of multiple water sources throughout the year. Groundwater concentrations of arsenic and specific conductivity (SpC) were greater than surface water (pond) concentrations; there was no statistically significant seasonal difference in mean concentrations in groundwater, but there was for ponds, with arsenic higher in the dry season. Average arsenic concentrations in local water drinking were 2-4 times times the national average. All of the local groundwater samples exceeded the Bangladesh guidance for SpC, although the majority of residents surveyed did not perceive their water as having a 'bad' or 'salty' taste.
Elementa - Science of the Anthropocene, 2017
Wilson, C, et al. 2017 Widespread infilling of tidal channels and navigable waterways in the huma... more Wilson, C, et al. 2017 Widespread infilling of tidal channels and navigable waterways in the human-modified tidal deltaplain of southwest Bangladesh. Since the 1960s, ~5000 km 2 of tidal deltaplain in southwest Bangladesh has been embanked and converted to densely inhabited, agricultural islands (i.e., polders). This landscape is juxtaposed to the adjacent Sundarbans, a pristine mangrove forest, both well connected by a dense network of tidal channels that effectively convey water and sediment throughout the region. The extensive embanking in poldered areas, however, has greatly reduced the tidal prism (i.e., volume of water) transported through local channels. We reveal that >600 km of these major waterways have infilled in recent decades, converting to land through enhanced sedimentation and the direct blocking of waterways by embankments and sluice gates. Nearly all of the observed closures (~98%) have occurred along the embanked polder systems, with no comparable changes occurring in channels of the Sundarbans (<2% change). We attribute most of the channel infilling to the local reduction of tidal prism in poldered areas and the associated decline in current velocities. The infilled channels account for ~90 km 2 of new land in the last 40-50 years, the rate of which, ~2 km 2 /yr, offsets the 4 km 2 /yr that is eroded at the coast, and is equivalent to ~20% of the new land produced naturally at the Ganges-Brahmaputra tidal rivermouth. Most of this new land, called 'khas' in Bengali, has been reclaimed for agriculture or aquaculture, contributing to the local economy. However, benefits are tempered by the loss of navigable waterways for commerce, transportation, and fishing, as well as the forced rerouting of tidal waters and sediments necessary to sustain this low-lying landscape against rising sea level. A more sustainable delta will require detailed knowledge of the consequences of these hydrodynamic changes to support more scientifically-grounded management of water, sediment, and tidal energy distribution.
Quaternary Geochronology, 2017
Deltas where luminescence dating is most essential due to organic-poor geologic records are also ... more Deltas where luminescence dating is most essential due to organic-poor geologic records are also those where it is often most challenging due to unsuitable luminescence properties of quartz grains, associated with rapid production of young clastic sediment. One example is the Ganges-Brahmaputra-Meghna Delta (GBMD), where Himalaya uplift drives erosion, production, and delivery to the delta plain of poorly sensitized quartz sand. Luminescence dating of fluvial deposits may be further complicated by partial bleaching prior to deposition. Here, we use GBMD quartz and polymineral sediment, including sand and silt fractions, with constrained depositional ages between a few years and a few centuries to test novel approaches to luminescence dating of fluvial deposits in an otherwise challenging setting. This produces the first delta-wide assessment of GBMD sediment luminescence dateability. We use a new multiple-signal SAR (MS-SAR) bleaching index (BI) to explore zeroing of the luminescence signals of sediment prior to deposition and to quantify the IR, pIRIR, and TL residual doses of GBMD polymineral silt with well-reset BSL signals. This test establishes BI values that can be used to identify sufficient bleaching of Holocene sediment with unknown depositional ages, thereby improving confidence in quartz silt dating. We find that GBMD quartz sand is unsuitable for luminescence dating in most localities. By contrast, GBMD silt is sufficiently bleached and has universally suitable luminescence characteristics, enabling dating of GBMD deposits up to the Last Glacial Maximum. Our findings in the GBMD establish methodology for obtaining and validating luminescence ages for fluvial deposits in challenging settings with unsuitable quartz sand.
Geochemical Transactions, 2017
To identify the causes of salinization and arsenic contamination of surface water on an embanked ... more To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element concentrations show that all surface water types lie on mixing lines between dry season tidal channel water and rainwater, i.e., all are related by varying degrees of salinization. High As concentrations in dry season tidal channel water and shrimp ponds likely result from groundwater exfiltration and upstream irrigation in the dry season. Arsenic is transferred from tidal channels to rice paddies through irrigation. Including groundwater samples from the same area (Ayers et al. in Geochem Trans 17:1-22, 2016), principal components analysis and correlation analysis reveal that salinization explains most variation in surface water compositions, whereas progressive reduction of buried surface water by dissolved organic carbon is responsible for the nonconservative behavior of S, Fe, and As and changes in Eh and alkalinity of groundwater.
Basin Research, 2018
The Holocene stratigraphy of Sylhet basin, a tectonically influenced sub-basin within the Ganges-... more The Holocene stratigraphy of Sylhet basin, a tectonically influenced sub-basin within the Ganges-Brahmaputra-Meghna delta (GMBD), provides evidence for autogenic and allogenic controls on fluvial system behaviour. Using Holocene lithology and stratigraphic architecture from a dense borehole network, patterns of bypass-dominated and extraction-enhanced modes of sediment transport and deposition have been reconstructed. During a ~3-kyr mid-Holocene occupation of Sylhet basin by the Brahmaputra River, water and sediment were initially (~7.5-6.0 ka) routed along the basin's western margin, where limited downstream facies changes reflect minimal mass extraction and bypass-dominated transport to the basin outlet. Sediment-dispersal patterns became increasingly depositional ~6.0-5.5 ka with the activation of a large (~2250 km 2) splay that prograded towards the basin centre while maintaining continued bypass along the western pathway. Beginning ~5.0 ka, a second splay system constructed an even larger (~3800 km 2) lobe into the most distal portions of the basin along the Shillong foredeep. This evolution from a bypass-dominated system to one of enhanced mass extraction is well reflected in (i) the rapid downstream fining of deposited sand and (ii) a change in facies from amalgamated channel deposits to mixed sands and muds within discrete depositional lobes. The persistence of sediment bypass suggests that seasonal flooding of the basin by local runoff exerts a hydrologic barrier to overbank flow and is thus a principal control on river path selection. This control is evidenced by (i) repeated, long-term preference for occupying a course along the basin margin rather than a steeper path to the basin centre and (ii) the persistence of an under-filled, topographically low basin despite sediment load sufficient to fill the basin within a few hundred years. The progradation of two 10-20-m thick, sandy mega-splays into the basin interior reflects an alternative mode of sediment dispersal that appears to have operated only in the mid-Holocene (~6.0-4.0 ka) during a regional weakening of the summer monsoon. The reduced water budget at that time would have lowered seasonal water levels in the basin, temporarily lessening the hydrologic barrier effect and facilitating splay development into the basin interior. Overall, these results place basin hydrology as a first-order control on fluvial system behaviour, strongly modifying the perceived dominance of tectonic subsidence. Such coupling of subsidence , fluvial dynamics and local hydrology have been explored through tank experiments and modelling; this field study demonstrates that complex, emergent behaviours can also scale to the world's largest fluvial system.
Science Advances, 2017
Simple pebble tools, ephemeral cultural features, and the remains of maritime and terrestrial foo... more Simple pebble tools, ephemeral cultural features, and the remains of maritime and terrestrial foods are present in undisturbed Late Pleistocene and Early Holocene deposits underneath a large human-made mound at Huaca Prieta and nearby sites on the Pacific coast of northern Peru. Radiocarbon ages indicate an intermittent human presence dated between ~15,000 and 8000 calendar years ago before the mound was built. The absence of fishhooks, harpoons, and bifacial stone tools suggests that technologies of gathering, trapping, clubbing, and exchange were used primarily to procure food resources along the shoreline and in estuarine wetlands and distant mountains. The stone artifacts are minimally worked unifacial stone tools characteristic of several areas of South America. Remains of avocado, bean, and possibly cultivated squash and chile pepper are also present, suggesting human transport and consumption. Our new findings emphasize an early coastal lifeway of diverse food procurement strategies that suggest detailed observation of resource availability in multiple environments and a knowledgeable economic organization, although technologies were simple and campsites were seemingly ephemeral and discontinuous. These findings raise questions about the pace of early human movement along some areas of the Pacific coast and the level of knowledge and technology required to exploit maritime and inland resources.
Basin Research, 2018
Floodplains, paleosols, and antecedent landforms near the apex of the Brahmaputra fan delta in no... more Floodplains, paleosols, and antecedent landforms near the apex of the Brahmaputra fan delta in north-central Bangladesh preserve cycles of fluvial sediment deposition, erosion and weathering. Together these landforms and their associated deposits comprise morphostratigraphic units that define the river's history and have influenced its channel position and avulsion behaviour through the Late Quaternary. Previously, temporal differentiation within these units has not been sufficient to decipher their sequence of deposition, an important step in understanding the spatial pattern of migration of the Brahmaputra River. Holocene units in this region are fairly well established by radiocarbon dating of in situ organic material, but pre-Holocene units are considered Pleistocene-aged if organic material is dated >48 000 year BP (the limit of radiocarbon dating) or the sediments are positioned beneath a prominent paleosol, interpreted as a buried soil horizon that developed during a previous sea level lowstand. In such cases, these morphostratigraphic units have been broadly interpreted as Pleistocene without knowing their absolute depositional ages or relative evolutionary chronology. Here we use detailed sediment analysis to better differentiate morphostratigraphic units at the Brahmaputra's avulsion node, establishing the sequence of deposition and subsequent weathering of these bodies. We then test this relative chronology by luminescence dating of the sands beneath these landform surfaces. This work provides the first absolute depositional age constraints of terrace sediments for the Middle to Late Pleistocene Brahmaputra River and upper Bengal basin. The luminescence ages are complemented by detailed compositional trends in the terrace deposits, including clay mineralogy and the degree of weathering. Together, these newly dated and carefully described morphostratigraphic units reflect eustasy-driven cycles of terrace development by way of highstand floodplain deposition and subsequent lowstand exposure and weathering, along with active tectonic deformation. Defining this Late Quaternary history of terrace development and position of the Brahmaputra River is a first step toward an integrated understanding of basin and delta evolution over multiple glacioeustatic cycles and tectonically relevant timescales.
Earth and Planetary Science Letters, 2018
Relative sea level history, which is the result of the combined effects of land subsidence, sedim... more Relative sea level history, which is the result of the combined effects of land subsidence, sediment supply and absolute sea level history may be reconstructed from preserved sediment thicknesses. However, variations in the preserved sediment thicknesses between different sedimentary environments strongly limit the accuracy of this type of geological approach, particularly in fluvial channelized systems, such as delta plains. To address this, we apply three different and independent stratigraphic approaches to the case of the Ganges-Brahmaputra-Meghna Delta (GBMD). Our approach has been made possible by a broad dataset of geological archives we have collected, which includes more than 400 hand-drilled stratigraphic wells, 198 radiocarbon ages, and river seismic reflection data (255 km of high-resolution multichannel seismic images). The seaward gradient of accommodation and the limit of the subsiding delta plain are estimated, assuming that the delta is near or at the base-level, which is considered to be the relative sea-level. First, a statistical analysis of the variability of preserved sediment thicknesses is used to derive the average pattern of accommodation from the Holocene isopach. Secondly, the preserved sediment thicknesses are analyzed by geomorphotectonic domains to estimate an average pattern of accommodation. Thirdly, the burial history of the seismically imaged last glacial incision of the Brahmaputra River is reconstructed. Results suggest that the variability of preserved sediment thicknesses can be up to 35% in a delta plain between river channel and flood plain deposits for the same relative sea-level history. Taking this variability into consideration, the Holocene relative sea-level history of the GBMD and the most likely pattern of subsidence are determined. Results provide evidence of moderate Holocene subsidence over the delta, gently increasing seaward from <0.2 mm/yr landward of the Hinge Zone, which can be considered as the northern limit of the subsiding delta plain, to 2 ± 0.7 mm/yr in the middle fluvial delta to 4 ± 1.4 mm/yr in the lower tidal delta. This enables us to construct the first millennial-scale map of subsidence pattern on the GBMD in which uncertainties on subsidence rates are provided. This map may aid in evaluating the negative impact that human modification may have on subsidence and relative sea level in the GBMD, and thereby help to determine better sustainable coastal management practices for the GBMD and other large delta plains.
Earth-Science Reviews, 2018
River channel confluences are widely acknowledged as important geomorphological nodes that contro... more River channel confluences are widely acknowledged as important geomorphological nodes that control the downstream routing of water and sediment, and which are locations for the preservation of thick fluvial deposits overlying a basal scour. Despite their importance, there has been little study of the stratigraphic characteristics of river junctions, or the role of confluence morphodynamics in influencing stratigraphic character and preservation potential. As a result, although it is known that confluences can migrate through time, models of confluence geomorphology and sedimentology are usually presented from the perspective that the confluence remains at a fixed location. This is problematic for a number of reasons, not least of which is the continuing debate over whether it is possible to discriminate between scour that has been generated by autocyclic processes (such as confluence scour) and that driven by allocyclic controls (such as sea-level change). This paper investigates the spatial mobility of river confluences by using the 40-year record of Landsat Imagery to elucidate the styles, rates of change and areal extent over which large river confluence scours may migrate. On the basis of these observations, a new classification of the types of confluence scour is proposed and applied to the Amazon and Ganges-Brahmaputra-Meghna (GBM) basins. This analysis demonstrates that the drivers of confluence mobility are broadly the same as those that drive channel change more generally. Thus in the GBM basin, a high sediment supply, large variability in monsoonal driven discharge and easily erodible bank materials result in a catchment where over 80% of large confluences are mobile over this 40-year window; conversely this figure is < 40% for the Amazon basin. These results highlight that: i) the potential areal extent of confluence scours is much greater than previously assumed, with the location of some confluences on the Jamuna (Brahmaputra) River migrating over a distance of 20 times the tributary channel width; ii) extensive migration in the confluence location is more common than currently assumed, and iii) confluence mobility is often tied to the lithological and hydrological characteristics of the drainage basins that determine sediment yield.
Geophysical Research Letters, 2018
The contribution of subsidence to relative sea level rise in the Ganges-Brahmaputra delta (GBD) i... more The contribution of subsidence to relative sea level rise in the Ganges-Brahmaputra delta (GBD) is largely unknown and may considerably enhance exposure of the Bengal Basin populations to sea level rise and storm surges. This paper focuses on estimating the present-day subsidence induced by Holocene sediment in the Bengal Basin and by oceanic loading due to eustatic sea level rise over the past 18 kyr. Using a viscoelastic Earth model and sediment deposition history based on in situ measurements, results suggest that massive sediment influx initiated in the early Holocene under a strengthened South Asian monsoon may have contributed significantly to the present-day subsidence of the GBD. We estimate that the Holocene loading generates up to 1.6 mm/yr of the present-day subsidence along the GBD coast, depending on the rheological model of the Earth. This rate is close to the twentieth century global mean sea level rise (1.1-1.7 mm/yr). Thus, past climate change, by way of enhanced sedimentation, is impacting vulnerability of the GBD populations. Plain Language Summary This paper estimates the land subsidence induced by sediments deposited in the Bengal Basin and by the sea level rise over the past 18,000 years. The results of numerical modeling demonstrate that the coast of the Ganges-Brahmaputra delta subsides at a rate of about 1-1.6 mm/yr depending on the lithospheric thickness and the Earth mantle viscosity. This is comparable to the rate of global mean sea level rise during the twentieth century. Thus, the intense sedimentation generated by climate changes in the past contributes significantly to the present-day subsidence of the Bengal coast.
Geological Society of America Bulletin, 2018
To better define the base of the Brahmaputra River paleovalley, we analyzed an extensive borehole... more To better define the base of the Brahmaputra River paleovalley, we analyzed an extensive borehole data set from the subaerial Bengal delta and a 255-km-long multichannel seismic survey along the modern river. The data reveal that the paleovalley floor is defined by a gravel unit containing boulder-sized clasts up to 30 cm in diameter, deposited after ca. 30 ka but before ca. 9 ka. Paleohydrology during that time and the previous glacial maximum was characterized by a weak monsoon and reduced river discharge, both of which are inconsistent with large valley formation. However, our work indicates that glacial-lake outburst floods sourced from the Tibetan reaches of the Brahmaputra were routed through the lowstand valley, producing megaflood-scale discharge capable of transporting gravel and cannibalizing the valley margins. The timing of these glacial-lake outburst flood–driven discharge events was coincident with valley development and explains the anomalously large width of the valley and basal gravel surface. Despite the underfit scale of Brahmaputra discharge following the last glacial period, a strengthening monsoon and high sediment discharge in the early Holocene subsequently contributed to the efficient infilling of the massive paleovalley by the mid-Holocene. In a sequence stratigraphic context, this work provides an example of a major unconformity that developed late in the eustatic cycle (i.e., during early transgression rather than an earlier, protracted response to sea-level lowering) and in response to a perturbation originating in the catchment instead of changing accommodation in the basin. As such, it represents a geologically instantaneous time surface that can be used as a marker for stratigraphic correlation but one that is not in phase with eustatic sea-level fall.
Earth Surface Dynamics, 2019
The landscape of southwest Bangladesh, a region constructed primarily by fluvial processes associ... more The landscape of southwest Bangladesh, a region constructed primarily by fluvial processes associated with the Ganges River and Brahmaputra River, is now maintained almost exclusively by tidal processes as the fluvial system has migrated east and eliminated the most direct fluvial input. In natural areas such as the Sundarbans National Forest, year-round inundation during spring high tides delivers sufficient sediment that enables vertical accretion to keep pace with relative sea-level rise. However, recent human modification of the landscape in the form of embankment construction has terminated this pathway of sediment delivery for much of the region, resulting in a startling elevation imbalance, with inhabited areas often sitting > 1 m below mean high water. Restoring this landscape, or preventing land loss in the natural system, requires an understanding of how rates of water and sediment flux vary across timescales ranging from hours to months. In this study, we combine time series observations of water level, salinity, and suspended sediment concentration with ship-based measurements of large tidal-channel hydrodynamics and sediment transport. To capture the greatest possible range of variability, cross-channel transects designed to encompass a 12.4 h tidal cycle were performed in both dry and wet seasons during spring and neap tides. Regional suspended sediment concentration begins to increase in August, coincident with a decrease in local salinity, indicating the arrival of the sediment-laden, freshwater plume of the combined Ganges-Brahmaputra-Meghna rivers. We observe profound seasonality in sediment transport, despite comparatively modest seasonal variability in the magnitude of water discharge. These observations emphasize the importance of seasonal sediment delivery from the main-stem rivers to this remote tidal region. On tidal timescales, spring tides transport an order of magnitude more sediment than neap tides in both the wet and dry seasons. In aggregate, sediment transport is flood oriented, likely as a result of tidal pumping. Finally, we note that rates of sediment and water discharge in the tidal channels are of the same scale as the annually averaged values for the Ganges and Brahmaputra rivers. These observations provide context for examining the relative importance of fluvial and tidal processes in what has been defined as a quintessentially tidally influenced delta in the classification scheme of Galloway (1975). These data also inform critical questions regarding the timing and magnitude of sediment delivery to the region, which are especially important in predicting and preparing for responses of the natural system to ongoing environmental change.
Earth Surface Processes and Landforms, 2019
Constraining time is of critical importance to evaluating the rates and relative contributions of... more Constraining time is of critical importance to evaluating the rates and relative contributions of processes driving landscape change in sedimentary basins. The geomorphic character of the field setting guides the application of geochronologic or instrumental tools to this problem, because the viability of methods can be highly influenced by geomorphic attributes. For example, sediment yield and the linked potential for organic preservation may govern the usefulness of radiocarbon dating. Similarly, the rate of sediment transport from source-tosink may determine the maturity and/or light exposure of mineral grains arriving in the delta and thus the feasibility of luminescence dating. Here, we explore the viability and quirks of dating and instrumental methods that have been applied in the Bengal Basin, and review the records that they have yielded. This immense, dynamic, and spatially variable system hosts the world's most inhabited delta. Outlining a framework for successful chronologic applications is thus of value to managing water and sediment resources for humans, here and in other populated deltas worldwide. Our review covers radiocarbon dating, luminescence dating, archaeological records and historical maps, short-lived radioisotopes, horizon markers and rod surface elevation tables, geodetic observations, and surface instrumentation.
Journal of Geophysical Research - Earth Surface, 2019
Quantitative interrogation of grain sizes in sedimentary systems has the potential to improve pre... more Quantitative interrogation of grain sizes in sedimentary systems has the potential to improve predictions of stratigraphic architecture, facies distributions, and downstream reservoir characteristics. To quantify these relationships, downstream fining data are coupled with rates of mass extraction, with input grain-size distribution, accommodation, and sediment input from multiple transport pathways providing primary controls on resulting sediment dispersal patterns. We spatially apportioned mass distribution along three sediment delivery pathways with distinct accommodation characteristics within the Ganges-Brahmaputra-Meghna Delta to calculate chi (í µí¼), the total fraction of supplied sediment flux lost to deposition at any given point. Low rates of downstream fining and sand-rich channel facies characterize a bypass-dominant pathway along the western margin of Sylhet basin, whereas two splay deposits that prograde into the underfilled basin interior exhibit higher rates of fining and preservation of mud-rich facies. Both splay deposits show a shift from sand-dominated to mixed sand and mud facies and increased mud preservation (above 30%) at a í µí¼ value of ∼0.8. No comparable increase in mud preservation occurs along the bypass-dominated pathway, suggesting that this course operated in an inherently different extraction mode due to limited mid-Holocene accommodation. A similarity solution model effectively reproduces most of the spatial patterns of mass extraction observed in Sylhet basin, except in one location receiving lateral sediment input from a distributary channel. These field and modeling results indicate that grain-size data and sediment volume measurements can be used to not only reconstruct paleodynamics of transport networks and resulting stratigraphy but also lead to predictive insights on subsurface heterogeneity, and thus improved reservoir and aquifer characterization.
Journal of Geophysical Research - Earth Surface, 2019
We examine variations in discharge exchange between two parallel, 1-to 2-km-wide tidal channels (... more We examine variations in discharge exchange between two parallel, 1-to 2-km-wide tidal channels (the Shibsa and the Pussur) in southwestern Bangladesh over spring-neap, and historical timescales. Our objective is to evaluate how large-scale, interconnected tidal channel networks respond to anthropogenic perturbation. The study area spans the boundary between the pristine Sundarbans Reserved Forest, where regular inundation of the intertidal platform maintains the fluvially abandoned delta plain, and the anthropogenically modified region to the north, where earthen embankments sequester large areas of formerly intertidal landscape. Estimates of tidal response to the embankment-driven reduction in basin volume, and hence tidal prism, predict a corresponding decrease in size of the mainstem Shibsa channel, yet the Shibsa is widening and locally scouring even as the interconnected Pussur channel faces rapid shoaling. Rather, the Shibsa has maintained or even increased its pre-polder tidal prism by capturing a large portion of the Pussur's basin via several "transverse" channels that are themselves widening and deepening. We propose that an enhanced tidal setup in the Pussur and the elimination of an effective Shibsa-Pussur flow barrier are driving this basin capture event. These results illustrate previously unrecognized channel interactions and emphasize the importance of flow reorganization in response to perturbations of interconnected, multichannel tidal networks that characterize several large tidal delta plains worldwide.