Jolly Basak | Visva-Bharati - Academia.edu (original) (raw)

Papers by Jolly Basak

Research paper thumbnail of Plant–Pathogen Interactions: What Microarray Tells About It

Molecular Biotechnology

Plant defense responses are mediated by elementary regulatory proteins that affect expression of ... more Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant–pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant–pathogen interaction, and ends with the future prospects of this technology.

Research paper thumbnail of Theoretical Model of the Three-dimensional Structure of a Disease Resistance Gene Homolog Encoding Resistance Protein in Vigna mungo

Journal of Biomolecular Structure & Dynamics, 2006

Plant disease resistance (R) genes, the key players of innate immunity system in plants encode ‘R... more Plant disease resistance (R) genes, the key players of innate immunity system in plants encode ‘R’ proteins. ‘R’ protein recognizes product of avirulance gene from the pathogen and activate downstream signaling responses leading to disease resistance. No three dimensional (3D) structural information of any ‘R’ proteins is available as yet. We have reported a ‘R’ gene homolog, the 'VMYR1′, encoding ‘R’ protein in Vigna mungo. Here, we describe the homology modeling of the 'VMYR1′ protein. The model was created by using the 3D structure of an ATP-binding cassette transporter protein from Vibrio cholerae as a template. The strategy for homology modeling was based on the high structural conservation in the superfamily of P-loop containing nucleoside triphosphate hydrolase in which target and template proteins belong. This is the first report of theoretical model structure of any ‘R’ proteins.

Research paper thumbnail of New motifs within the NB-ARC domain of R proteins: Probable mechanisms of integration of geminiviral signatures within the host species of Fabaceae family and implications in conferring disease resistance

Journal of Theoretical Biology, 2007

The Gemini viruses are a group of plant infectious agents, of which mungbean yellow mosaic India ... more The Gemini viruses are a group of plant infectious agents, of which mungbean yellow mosaic India virus (MYMIV) belongs to the bipartite subgroup of Gemini virus and causes serious yield penalty in the leguminous group of plants. In this investigation we have isolated two resistant gene homologues (RGHs; AY301990, AY301991) from two MYMIV-resistant lines of Vigna mungo and V. radiata that have high homology with a MYMIV-resistant linked marker, VMYR1 (AY 297425). These three resistance factors also have similarity with 221 reported R gene/RGH sequences in the NB-ARC domain of the family Fabaceae. NB-ARC domain is an ancient, highly conserved domain of a class of plant disease resistance genes/proteins. Out of 221 in silico translated protein sequences, multialignment of 188 sequences without large insertion or truncation, unlike that of the rest 33, illustrated presence of both TIR and non-TIR subfamilies of NB-ARC domain. A critical analysis of these sequences revealed eight new conserved motifs, in addition to the reported conserved motifs within the NB-ARC domains, which are hitherto not reported. Further analysis of these eight motifs with the aid of PRINTS and PROSITE databases revealed signatures of geminiviral coat protein (GVCP) within the favoured allele, R gene or RGHs. GVCP signatures are absent within the NB-ARC domain of three species of Medicago, which are non-host to Gemini virus. These observations tempted us to predict probable mechanism of integration of GVCP within the plant R gene/RGHs and their implications in conferring geminiviral disease resistance to the host plants. Our conjecture is that these signatures were integrated during plant pathogen interaction and are being maintained within this conserved domain through active selection of the favoured allele. We comprehensively addressed the biological significance of GVCP signatures, which probably provides additional defense against Gemini viruses through degradation of homologous transcript of the virus. r

Research paper thumbnail of Molecular Marker-Assisted Genotyping of Mungbean Yellow Mosaic India Virus Resistant Germplasms of Mungbean and Urdbean

Molecular Biotechnology, 2011

Mungbean Yellow Mosaic India Virus (MYMIV) belonging to the genus begomovirus causes the yellow m... more Mungbean Yellow Mosaic India Virus (MYMIV) belonging to the genus begomovirus causes the yellow mosaic disease in a number of economically important edible grain legumes including mungbean (Vigna radiata), urdbean (Vigna mungo) and soybean (Glycine max). The disease is severe, critical, open spread and inflicts heavy yield losses annually. The objective of this study is to develop molecular markers linked to MYMIV-resistance to facilitate genotyping of urdbean and mungbean germplasms for MYMIV-reaction. Resistance-linked molecular markers were successfully developed from consensus motifs of other resistance (R) gene or R gene homologue sequences. Applying linked marker-assisted genotyping, plant breeders can carry out repeated genotyping throughout the growing season in absence of any disease incidence. Two MYMIV-resistance marker loci, YR4 and CYR1, were identified and of these two CYR1 is completely linked with MYMIV-resistant germplasms and co-segregating with MYMIV-resistant F2, F3 progenies of urdbean. The present study demonstrated that these two markers could be efficiently employed together in a multiplex-PCR-reaction for genotyping both V. mungo and V. radiata germplasms from field grown plants and also directly from the seed stock. This method of genotyping would save time and labour during the introgression of MYMIV-resistance through molecular breeding, as methods of phenotyping against begomoviruses are tedious, labour and time intensive.

Research paper thumbnail of Development of Yellow Mosaic Virus (YMV) resistance linked DNA marker in Vigna mungo from populations segregating for YMV-reaction

Molecular Breeding, 2005

Yellow mosaic virus, YMV, causes one of the most severe of biotic stresses in Vignas, an importan... more Yellow mosaic virus, YMV, causes one of the most severe of biotic stresses in Vignas, an important group of pulse crops. The viral disease is transmitted through the white fly, Bemicia tabaci, and the yield of the plants is affected drastically. YMV-tolerant lines, generated from a single YMV-tolerant plant identified in the field within a large population of the susceptible cultivar T-9, were crossed with T-9, and F1, F2 and F3 progenies raised. The different generations were phenotyped for YMV-reaction by forced inoculation using viruliferous white flies. A monogenic recessive control of YMV-tolerance was revealed from the F2 segregation ratio of 3:1 (susceptible: tolerant), which was confirmed by the segregation ratio of the F3 families. Of 24 pairs of resistance gene analog (RGA) primers screened, only one pair, RGA 1F-CG/RGA 1R, was found to be polymorphic among the parents. Selected F2 individuals and F3 families were genotyped with the polymorphic RGA primer pair and the polymorphism was found to be linked with YMV-reaction. This primer pair amplified a 445bp DNA fragment only from homozygous tolerant and the heterozygous lines. The 445bp marker band was sequenced and named 'VMYR1'. The predicted amino acid sequence showed highly significant homology with the NB-ARC domain present in several gene products involved in plant disease resistance, nematode cell death and human apoptotic signaling. To the best of our knowledge, this is the first report of YMV-resistance linked DNA marker development in any crop species using segregating populations. This YMV-resistance linked marker is of potential commercial importance in resistance breeding of plants.

Research paper thumbnail of Development of Yellow Mosaic Virus (YMV) resistance linked DNA marker in Vigna mungo from populations segregating for YMV-reaction

Molecular Breeding, 2005

Yellow mosaic virus, YMV, causes one of the most severe of biotic stresses in Vignas, an importan... more Yellow mosaic virus, YMV, causes one of the most severe of biotic stresses in Vignas, an important group of pulse crops. The viral disease is transmitted through the white fly, Bemicia tabaci, and the yield of the plants is affected drastically. YMV-tolerant lines, generated from a single YMV-tolerant plant identified in the field within a large population of the susceptible cultivar T-9, were crossed with T-9, and F1, F2 and F3 progenies raised. The different generations were phenotyped for YMV-reaction by forced inoculation using viruliferous white flies. A monogenic recessive control of YMV-tolerance was revealed from the F2 segregation ratio of 3:1 (susceptible: tolerant), which was confirmed by the segregation ratio of the F3 families. Of 24 pairs of resistance gene analog (RGA) primers screened, only one pair, RGA 1F-CG/RGA 1R, was found to be polymorphic among the parents. Selected F2 individuals and F3 families were genotyped with the polymorphic RGA primer pair and the polymorphism was found to be linked with YMV-reaction. This primer pair amplified a 445bp DNA fragment only from homozygous tolerant and the heterozygous lines. The 445bp marker band was sequenced and named ‘VMYR1’. The predicted amino acid sequence showed highly significant homology with the NB-ARC domain present in several gene products involved in plant disease resistance, nematode cell death and human apoptotic signaling. To the best of our knowledge, this is the first report of YMV-resistance linked DNA marker development in any crop species using segregating populations. This YMV-resistance linked marker is of potential commercial importance in resistance breeding of plants.

Research paper thumbnail of Agronomic, Genetic and Molecular Characterization of MYMIV-Tolerant Mutant Lines of Vigna mungo

International Journal of Plant Breeding and Genetics, 2009

Research paper thumbnail of Journal of Biomolecular Structure and Dynamics Molecular modeling of protein–protein interaction to decipher the structural mechanism of nonhost resistance in rice

Research paper thumbnail of Plant–Pathogen Interactions: What Microarray Tells About It

Molecular Biotechnology

Plant defense responses are mediated by elementary regulatory proteins that affect expression of ... more Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant–pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant–pathogen interaction, and ends with the future prospects of this technology.

Research paper thumbnail of Theoretical Model of the Three-dimensional Structure of a Disease Resistance Gene Homolog Encoding Resistance Protein in Vigna mungo

Journal of Biomolecular Structure & Dynamics, 2006

Plant disease resistance (R) genes, the key players of innate immunity system in plants encode ‘R... more Plant disease resistance (R) genes, the key players of innate immunity system in plants encode ‘R’ proteins. ‘R’ protein recognizes product of avirulance gene from the pathogen and activate downstream signaling responses leading to disease resistance. No three dimensional (3D) structural information of any ‘R’ proteins is available as yet. We have reported a ‘R’ gene homolog, the 'VMYR1′, encoding ‘R’ protein in Vigna mungo. Here, we describe the homology modeling of the 'VMYR1′ protein. The model was created by using the 3D structure of an ATP-binding cassette transporter protein from Vibrio cholerae as a template. The strategy for homology modeling was based on the high structural conservation in the superfamily of P-loop containing nucleoside triphosphate hydrolase in which target and template proteins belong. This is the first report of theoretical model structure of any ‘R’ proteins.

Research paper thumbnail of New motifs within the NB-ARC domain of R proteins: Probable mechanisms of integration of geminiviral signatures within the host species of Fabaceae family and implications in conferring disease resistance

Journal of Theoretical Biology, 2007

The Gemini viruses are a group of plant infectious agents, of which mungbean yellow mosaic India ... more The Gemini viruses are a group of plant infectious agents, of which mungbean yellow mosaic India virus (MYMIV) belongs to the bipartite subgroup of Gemini virus and causes serious yield penalty in the leguminous group of plants. In this investigation we have isolated two resistant gene homologues (RGHs; AY301990, AY301991) from two MYMIV-resistant lines of Vigna mungo and V. radiata that have high homology with a MYMIV-resistant linked marker, VMYR1 (AY 297425). These three resistance factors also have similarity with 221 reported R gene/RGH sequences in the NB-ARC domain of the family Fabaceae. NB-ARC domain is an ancient, highly conserved domain of a class of plant disease resistance genes/proteins. Out of 221 in silico translated protein sequences, multialignment of 188 sequences without large insertion or truncation, unlike that of the rest 33, illustrated presence of both TIR and non-TIR subfamilies of NB-ARC domain. A critical analysis of these sequences revealed eight new conserved motifs, in addition to the reported conserved motifs within the NB-ARC domains, which are hitherto not reported. Further analysis of these eight motifs with the aid of PRINTS and PROSITE databases revealed signatures of geminiviral coat protein (GVCP) within the favoured allele, R gene or RGHs. GVCP signatures are absent within the NB-ARC domain of three species of Medicago, which are non-host to Gemini virus. These observations tempted us to predict probable mechanism of integration of GVCP within the plant R gene/RGHs and their implications in conferring geminiviral disease resistance to the host plants. Our conjecture is that these signatures were integrated during plant pathogen interaction and are being maintained within this conserved domain through active selection of the favoured allele. We comprehensively addressed the biological significance of GVCP signatures, which probably provides additional defense against Gemini viruses through degradation of homologous transcript of the virus. r

Research paper thumbnail of Molecular Marker-Assisted Genotyping of Mungbean Yellow Mosaic India Virus Resistant Germplasms of Mungbean and Urdbean

Molecular Biotechnology, 2011

Mungbean Yellow Mosaic India Virus (MYMIV) belonging to the genus begomovirus causes the yellow m... more Mungbean Yellow Mosaic India Virus (MYMIV) belonging to the genus begomovirus causes the yellow mosaic disease in a number of economically important edible grain legumes including mungbean (Vigna radiata), urdbean (Vigna mungo) and soybean (Glycine max). The disease is severe, critical, open spread and inflicts heavy yield losses annually. The objective of this study is to develop molecular markers linked to MYMIV-resistance to facilitate genotyping of urdbean and mungbean germplasms for MYMIV-reaction. Resistance-linked molecular markers were successfully developed from consensus motifs of other resistance (R) gene or R gene homologue sequences. Applying linked marker-assisted genotyping, plant breeders can carry out repeated genotyping throughout the growing season in absence of any disease incidence. Two MYMIV-resistance marker loci, YR4 and CYR1, were identified and of these two CYR1 is completely linked with MYMIV-resistant germplasms and co-segregating with MYMIV-resistant F2, F3 progenies of urdbean. The present study demonstrated that these two markers could be efficiently employed together in a multiplex-PCR-reaction for genotyping both V. mungo and V. radiata germplasms from field grown plants and also directly from the seed stock. This method of genotyping would save time and labour during the introgression of MYMIV-resistance through molecular breeding, as methods of phenotyping against begomoviruses are tedious, labour and time intensive.

Research paper thumbnail of Development of Yellow Mosaic Virus (YMV) resistance linked DNA marker in Vigna mungo from populations segregating for YMV-reaction

Molecular Breeding, 2005

Yellow mosaic virus, YMV, causes one of the most severe of biotic stresses in Vignas, an importan... more Yellow mosaic virus, YMV, causes one of the most severe of biotic stresses in Vignas, an important group of pulse crops. The viral disease is transmitted through the white fly, Bemicia tabaci, and the yield of the plants is affected drastically. YMV-tolerant lines, generated from a single YMV-tolerant plant identified in the field within a large population of the susceptible cultivar T-9, were crossed with T-9, and F1, F2 and F3 progenies raised. The different generations were phenotyped for YMV-reaction by forced inoculation using viruliferous white flies. A monogenic recessive control of YMV-tolerance was revealed from the F2 segregation ratio of 3:1 (susceptible: tolerant), which was confirmed by the segregation ratio of the F3 families. Of 24 pairs of resistance gene analog (RGA) primers screened, only one pair, RGA 1F-CG/RGA 1R, was found to be polymorphic among the parents. Selected F2 individuals and F3 families were genotyped with the polymorphic RGA primer pair and the polymorphism was found to be linked with YMV-reaction. This primer pair amplified a 445bp DNA fragment only from homozygous tolerant and the heterozygous lines. The 445bp marker band was sequenced and named 'VMYR1'. The predicted amino acid sequence showed highly significant homology with the NB-ARC domain present in several gene products involved in plant disease resistance, nematode cell death and human apoptotic signaling. To the best of our knowledge, this is the first report of YMV-resistance linked DNA marker development in any crop species using segregating populations. This YMV-resistance linked marker is of potential commercial importance in resistance breeding of plants.

Research paper thumbnail of Development of Yellow Mosaic Virus (YMV) resistance linked DNA marker in Vigna mungo from populations segregating for YMV-reaction

Molecular Breeding, 2005

Yellow mosaic virus, YMV, causes one of the most severe of biotic stresses in Vignas, an importan... more Yellow mosaic virus, YMV, causes one of the most severe of biotic stresses in Vignas, an important group of pulse crops. The viral disease is transmitted through the white fly, Bemicia tabaci, and the yield of the plants is affected drastically. YMV-tolerant lines, generated from a single YMV-tolerant plant identified in the field within a large population of the susceptible cultivar T-9, were crossed with T-9, and F1, F2 and F3 progenies raised. The different generations were phenotyped for YMV-reaction by forced inoculation using viruliferous white flies. A monogenic recessive control of YMV-tolerance was revealed from the F2 segregation ratio of 3:1 (susceptible: tolerant), which was confirmed by the segregation ratio of the F3 families. Of 24 pairs of resistance gene analog (RGA) primers screened, only one pair, RGA 1F-CG/RGA 1R, was found to be polymorphic among the parents. Selected F2 individuals and F3 families were genotyped with the polymorphic RGA primer pair and the polymorphism was found to be linked with YMV-reaction. This primer pair amplified a 445bp DNA fragment only from homozygous tolerant and the heterozygous lines. The 445bp marker band was sequenced and named ‘VMYR1’. The predicted amino acid sequence showed highly significant homology with the NB-ARC domain present in several gene products involved in plant disease resistance, nematode cell death and human apoptotic signaling. To the best of our knowledge, this is the first report of YMV-resistance linked DNA marker development in any crop species using segregating populations. This YMV-resistance linked marker is of potential commercial importance in resistance breeding of plants.

Research paper thumbnail of Agronomic, Genetic and Molecular Characterization of MYMIV-Tolerant Mutant Lines of Vigna mungo

International Journal of Plant Breeding and Genetics, 2009

Research paper thumbnail of Journal of Biomolecular Structure and Dynamics Molecular modeling of protein–protein interaction to decipher the structural mechanism of nonhost resistance in rice