Vincent Sitzmann (original) (raw)

Bio

I am an Assistant Professor at MIT EECS, where I am leading theScene Representation Group. Previously, I did my Ph.D. at Stanford University as well as a Postdoc at MIT CSAIL. My research interest lies in building AI that perceives and models the world the way that humans do. Specifically, I work towards models that can learn to reconstruct a rich state description of their environment, such as reconstructing its 3D structure, materials, semantics, etc. from vision. These models should also be able to model the impact of their own actions on that environment, i.e., learn a "mental simulator" or "world model". I am particularly interested in models that can learn these skills fully self-supervised only from video and by self-directed interaction with the world.

Publications

Unifying 3D Representation and Control of Diverse Robots with a Single Camera

arXiv

Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion

NeurIPS

Boyuan Chen*, Diego Marti Monso*, Yilun Du, Max Simchowitz, Russ Tedrake, Vincent Sitzmann

Neural Isometries: Taming Transformations for Equivariant ML

NeurIPS

Tommy Mitchel, Michael Taylor, Vincent Sitzmann

FlowMap: High-Quality Camera Poses, Intrinsics, and Depth via Gradient Descent

arXiv

Cameron Smith*, David Charatan*, Ayush Tewari, Vincent Sitzmann

pixelSplat: 3D Gaussian Splats from Image Pairs for Scalable Generalizable 3D Reconstruction

CVPR 2024 (Oral, Best Paper Runner-Up)

David Charatan, Sizhe Li, Andrea Tagliasacchi, Vincent Sitzmann

Variational Barycentric Coordinates

SIGGRAPH Asia 2023 (Journal Track)

Ana Dodik, Oded Stein, Vincent Sitzmann, Justin Solomon

Diffusion with Forward Models: Solving Stochastic Inverse Problems Without Direct Supervision

NeurIPS 2024 (Spotlight)

Ayush Tewari*, Tianwei Yin*, George Cazenavette, Joshua B. Tenenbaum, Fredo Durand, William T. Freeman,

Vincent Sitzmann

FlowCam: Training Generalizable 3D Radiance Fields without Camera Poses via Pixel-Aligned Scene Flow

NeurIPS 2024

Cameron Smith, Yilun Du, Ayush Tewari, Vincent Sitzmann

Learning to Render Novel Views from Wide-Baseline Stereo Pairs

CVPR 2023

Yilun Du, Cameron Smith, Ayush Tewari†, Vincent Sitzmann†

Seeing 3D Objects in a Single Image via Self-Supervised Static-Dynamic Disentanglement

ICLR 2022

Prafull Sharma, Ayush Tewari, Yilun Du, Sergey Zakharov, Rares Ambrus, Adrien Gaidon, William T. Freeman, Fredo Durand, Joshua B. Tenenbaum,

Vincent Sitzmann

Decomposing NeRF for Editing via Feature Field Distillation

NeurIPS 2022

Sosuke Kobayashi, Eiichi Matsumoto,

Vincent Sitzmann

Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation

ICRA 2022

Anthony Simeonov*, Yilun Du*, Andrea Tagliasacchi, Alberto Rodriguez, Pulkit Agrawal†,

Vincent Sitzmann

Learning Signal-Agnostic Manifolds of Neural Fields

NeurIPS 2021

Yilun Du, Katherine M. Collins, Joshua Tenenbaum,

Vincent Sitzmann

Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering

NeurIPS 2021 (Spotlight)

Vincent Sitzmann

*, Semon Rezchikov*, William T. Freeman, Joshua B. Tenenbaum, Frédo Durand

Implicit Neural Representations with Periodic Activation Functions

NeurIPS 2020 (Oral)

Vincent Sitzmann

*, Julien N. P. Martel*, Alexander W. Bergman, David B. Lindell, Gordon Wetzstein

MetaSDF: Meta-learning Signed Distance Functions

NeurIPS 2020

Vincent Sitzmann

*, Eric R. Chan*, Richard Tucker, Noah Snavely, Gordon Wetzstein

State of the Art on Neural Rendering

Computer Graphics Forum 2020 - EG 2020 (STAR Report)

Ayush Tewari*, Ohad Fried*, Justus Thies*,

Vincent Sitzmann*

, Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-Brualla, Tomas Simon, Jason Saragih, Matthias Nießner, Rohit Pandey, Sean Fanello, Gordon Wetzstein, Jun-Yan Zhu, Christian Theobalt, Maneesh Agrawala, Eli Shechtman, Dan B Goldman, Michael Zollhöfer

Inferring Semantic Information with 3D Neural Scene Representations

3DV

Amit Kohli*,

Vincent Sitzmann*

, Gordon Wetzstein

Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

NeurIPS 2019 (Oral, Honorable Mention "Outstanding New Directions")

Vincent Sitzmann

, Michael Zollhöfer, Gordon Wetzstein

DeepVoxels: Learning Persistent 3D Feature Embeddings

CVPR 2019 (Oral)

Vincent Sitzmann

, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, Michael Zollhöfer

Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification

Scientific Reports

Julie Chang,

Vincent Sitzmann

, Xiong Dun, Wolfgang Heidrich, Gordon Wetzstein

End-to-end Optimization of Optics and Image Processing for Achromatic Extended Depth of Field and Super-resolution Imaging

SIGGRAPH 2018

Vincent Sitzmann*

, Steven Diamond*, Yifan Peng*, Xiong Dun, Stephen Boyd, Wolfgang Heidrich, Felix Heide, Gordon Wetzstein

Saliency in VR: How do people explore virtual environments?

IEEE VR 2018

Vincent Sitzmann*

, Ana Serrano*, Amy Pavel, Maneesh Agrawala, Belen Masia, Diego Gutierrez, Gordon Wetzstein

Movie Editing and Cognitive Event Segmentation in Virtual Reality Video

SIGGRAPH 2017

Ana Serrano,

Vincent Sitzmann

, Jaime Ruiz-Borau, Gordon Wetzstein, Diego Gutierrez, Belen Masia

Towards a Machine-learning Approach for Sickness Prediction in 360° Stereoscopic Videos

IEEE VR 2018

Nitish Padmanaban*, Timon Ruban*,

Vincent Sitzmann

, Anthony M. Norcia, Gordon Wetzstein