Michael Volny | University of Washington (original) (raw)
Papers by Michael Volny
ABSTRACT We report a microfluidic device, using segmented flow in a two-phase system of immiscibl... more ABSTRACT We report a microfluidic device, using segmented flow in a two-phase system of immiscible liquids, which delivers aqueous droplets into a modified commercial mass spectrometer. The interface coupling the microfluidics to the mass spectrometer achieves up to 96% sample transfer efficiency to the vacuum chamber. Sample ionization is assisted by multipass infrared laser beam in the interface. The system achieves low femtomole detection limits of several analytes ranging from drugs to proteins. Sample ionization in this segmented-flow sampling was found to be remarkably insensitive to the presence of buffer salts and other matrices.
Journal of Bacteriology, 2021
As the emerging threat of multidrug-resistant (MDR) bacteria continues to increase, no new classe... more As the emerging threat of multidrug-resistant (MDR) bacteria continues to increase, no new classes of antibiotics have been discovered in the last 50 years. While previous attempts to inhibit the lipoprotein biosynthetic (LspA) or transport (LolCDE) pathways have been made, most efforts have been hindered by the emergence of a common mechanism leading to resistance, namely, the deletion of the gene encoding a major Gram-negative outer membrane lipoprotein lpp. ABSTRACT Lipoprotein diacylglyceryl transferase (Lgt) catalyzes the first step in the biogenesis of Gram-negative bacterial lipoproteins which play crucial roles in bacterial growth and pathogenesis. We demonstrate that Lgt depletion in a clinical uropathogenic Escherichia coli strain leads to permeabilization of the outer membrane and increased sensitivity to serum killing and antibiotics. Importantly, we identify G2824 as the first-described Lgt inhibitor that potently inhibits Lgt biochemical activity in vitro and is bacter...
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2018
Mass Spectrometry has commonly been used in the semi-conductor industry where maintaining a clean... more Mass Spectrometry has commonly been used in the semi-conductor industry where maintaining a clean environment with minimum contaminants under high vacuum is crucial for successful manufacturing. Since the technology's early usage for pharmaceutical manufacturing in the early '80s, particularly in the freeze-drying environment, much has changed. The focus of the current work is aimed at asking some key questions regarding the maturity of the technology, its challenges and importance of having an application-specific instrument for quantitative process analyses applied to freeze-drying. Furthermore, we compare the use of mass spectrometers in early installations from the 80's with recent experiences of the technology in the production and laboratory environments comparing data from different MS technologies. In addition, the manuscript covers broad application of the technology towards detection of and sensitivity for analytes including silicone oil, Helium and also explor...
Analytical Chemistry, 2016
Journal of Mass Spectrometry, 2015
Journal of Mass Spectrometry, 2012
Journal of Mass Spectrometry, 2011
Scanning electron microscopy was used to investigate rivulets that are formed on the analyzed sur... more Scanning electron microscopy was used to investigate rivulets that are formed on the analyzed surface during desorption electrospray ionization (DESI) experiment. Ferromagnetic nanoparticles added to the spray solvent in a form of colloid solution functioned as an additional surface probe. The existence of the rivulets was confirmed on glass and newly demonstrated on two different types of porous polytetrafluoroethylene (PTFE). The results show that in standard DESI set-up the rivulets are arranged into very regular shapes. Same rivulets were obtained in DESI experiments without high voltage on the sprayer. However, no such rivulets or any other regular patterns were found on a surface in nano-DESI (nanospray DESI without the carrier nebulizing gas) experiments. This indicates that symmetrical rivulets are created by the hydrodynamical rather than electrostatic forces. It was also demonstrated that blocking the rivulets by a simple physical barrier did not influence known surface charging effects.
Journal of biomedical materials research. Part B, Applied biomaterials, 2007
A novel dry process for immobilization of hyaluronan on stainless steel surfaces is presented. Th... more A novel dry process for immobilization of hyaluronan on stainless steel surfaces is presented. This process that we call reactive landing is based on an interaction of hyperthermal gas-phase hyaluronan ions with plasma-cleaned and activated stainless steel surfaces. Reactive landing is performed on a unique instrument that combines an in-situ plasma reactor with an electrospray ion source and ion transfer optics. Gas-phase hyaluronan anions are obtained by electrospray ionization of sodium hyaluronan solutions and immobilized by reactive landing on large-area stainless steel surfaces. The immobilized hyaluronan withstands extensive washing with polar solvents and solutions, and the washed surfaces maintain the protective properties against blood platelet activation. The mechanism of hyaluronan discharge and immobilization is discussed.
Analytical chemistry, 2005
Soft landing on a plasma-treated metal surface of multiply protonated protein ions from the gas p... more Soft landing on a plasma-treated metal surface of multiply protonated protein ions from the gas phase results in a substantial retention of protein function, as demonstrated for trypsin and streptavidin. The majority of trypsin ions soft-landed at hyperthermal kinetic energies are undamaged and retain 72-98% of enzymatic activity after being washed into solution. A small fraction of trypsin ions that were landed at nominal kinetic energies of 130-200 eV remain tethered to the surface and show approximately 50% enzymatic activity. The streptavidin tetramer is found to dissociate to monomer units upon multiple charging in electrospray. The majority of soft-landed monomers can be washed into solution where they show affinity to biotin. The layer of streptavidin monomer that is immobilized on the surface can be detected if fluorescence-tagged and retains the ability to reversibly bind biotin. A mechanism is proposed to explain nondestructive protein ion discharge on the surface that con...
Analytical chemistry, 2005
Soft landing of singly charged gas-phase ions on dry metal surfaces that were pretreated in situ ... more Soft landing of singly charged gas-phase ions on dry metal surfaces that were pretreated in situ by oxygen plasma results in 0.1-2% total yields of recovered intact compounds. Lysine, peptides, crystal violet dye, and a biotin conjugate are found to survive soft landing of hyperthermal ions of up to 50-eV kinetic energy. Soft landing at 40-50-eV ion kinetic energies of a fluorescence-labeled biotin conjugate results in an immobilized fraction that cannot be washed from the surface and is found to contain an intact biotin moiety. The present results represent an approximately 10(4) fold improvement in soft-landing efficiency and indicate that plasma-treated metal surfaces can be useful for preparative separation of organic and biological molecules by mass spectrometry. The substantial improvement in soft-landing yields results from a high transmission of electrosprayed ions into the vacuum system, efficient and nondestructive discharge of ions on the metal oxide surface, and facile a...
Biomicrofluidics, 2014
This paper describes the use of electro-hydrodynamic actuation to control the transition between ... more This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior.
Journal of mass spectrometry : JMS, 2008
We report new experiments in which laser desorption/ionization time-of-flight mass spectrometry (... more We report new experiments in which laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS) was applied to detection and characterization of gramicidin S and IgG pentapeptide (DSDPR) that were reactively landed on plasma-treated stainless steel surfaces. The distributions of [M+H](+), [M+Na](+) and [M + K](+) ion species in LDI-TOF for gramicidin S and IgG pentapeptide (DSDPR) were found to be markedly different from those in conventional MALDI-TOF spectra of the same samples. LDI-TOF mass spectra showed a strong preference for [M+K](+) adducts even in the presence of a large excess of sodium cations, or following surface treatment with trifluoroacetic acid. Alkali metal cations (K(+) and Cs(+)) can be exchanged in reactively landed peptide samples to provide the corresponding cationized peptide ions by LDI. Multiple charged trypsin cations were reactively landed into a layer of 2-(4-hydroxyphenylazo)benzoic acid and ionized by LDI. The ionization mechanisms for LDI...
Journal of The American Society for Mass Spectrometry, 2009
Zirconium, titanium, and hafnium oxide-coated stainless steel surfaces are fabricated by reactive... more Zirconium, titanium, and hafnium oxide-coated stainless steel surfaces are fabricated by reactive landing of gas-phase ions produced by electrospray ionization of group IVB metal alkoxides. The surfaces are used for in situ enrichment of phosphopeptides before analysis by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. To evaluate this method we characterized ZrO2 (zirconia) surfaces by (1) comparison with the other
Analytical and Bioanalytical Chemistry, 2014
Fabry disease is an X-linked lysosomal storage disease due to deficient α-galactosidase A (α-Gal ... more Fabry disease is an X-linked lysosomal storage disease due to deficient α-galactosidase A (α-Gal A) activity and the resultant lysosomal accumulation of globotriaosylceramide (Gb3) and related lipids primarily in blood vessels, kidney, heart, and other organs. The renal distribution of stored glycolipid species in the α-Gal A knockout mouse model was compared to that in mice to assess relative distribution and absolute amounts of accumulated sphingolipid isoforms. Twenty isoforms of five sphingolipid groups were visualized by mass spectrometry imaging (MSI), and their distribution was compared with immunohistochemical (IHC) staining of Gb3, the major stored glycosphingolipid in consecutive tissue sections. Quantitative bulk lipid analysis of tissue sections was assessed by electrospray ionization with tandem mass spectrometry (ESI-MS/MS). In contrast to the findings in wild-type mice, all three analytical techniques (MSI, IHC, and ESI-MS/MS) revealed increases in Gb3 isoforms and ceramide dihexosides (composed mostly of galabiosylceramides), respectively. To our knowledge, this is the first report of the distribution of individual molecular species of Gb3 and galabiosylceramides in kidney sections in Fabry disease mouse. In addition, the spatial distribution of ceramides, ceramide monohexosides, and sphingomyelin forms in renal tissue is presented and discussed in the context of their biosynthesis.
Analytical Chemistry, 2007
The Analyst, 2003
Conventional electrothermal atomic absorption spectrometric (ETAAS) equipment was extensively mod... more Conventional electrothermal atomic absorption spectrometric (ETAAS) equipment was extensively modified to enable automated in situ electrodeposition. The original autosampler injection Teflon capillary was replaced by a composite Pt/Teflon capillary which served as an anode in the electrodeposition circuit. Incorporation of a peristaltic pump and of a three-way solenoid under computer control into the sample dispenser circuit provided all necessary steps for automated electrodeposition-ETAAS determination. The automated sequence controlled addition of Pd modifier and of the analyte, electrolysis, withdrawal of spent electrolyte, rinsing, drying and atomization. Performance of the system was evaluated by analyzing Pb in 3% m/v NaCl. Optimization using factorial design yielded 3sigma detection limit of 20 pg Pb and reproducibility of 1.0-1.4% (for constant current electrodeposition), these values being superior to the results of conventional ETAAS of Pb in 0.5% m/v NaCl. Sensitivity of Pb determination is not affected by NaCl, NaOH, NaNO3 and NH4H2PO4, up to 4.6% m/v, demonstrating efficient matrix removal in the electrodeposition step.
The Analyst, 2008
Time resolved measurements show that during a desorption electrospray ionization (DESI) experimen... more Time resolved measurements show that during a desorption electrospray ionization (DESI) experiment, the current initially rises sharply, followed by an exponential decrease to a relatively steady current. When the high voltage on the spray emitter is switched off, the current drops to negative values, suggesting that the direction of current flow in the equivalent DESI circuit is reversed. These data demonstrate that the DESI source behaves as a dc capacitor and that the addition of a surface between the sprayer and the counter electrode in DESI introduces a new electrically active element into the system. The charging and discharging behavior was observed using different surfaces and it could be seen both by making current measurements on a plate at the entrance to the mass spectrometer as well as by measuring ion current in the linear ion trap within the vacuum system of the mass spectrometer. The magnitude of the steady state current obtained without analyte present on the surface is different for different surface materials, and different capacitor time constants of the equivalent RC circuits were calculated for different DESI surfaces. The PTFE surface has by far the greatest time constant and is also able to produce the highest DESI currents. Surface properties play a crucial role in charge transfer during DESI in addition to the effects of the chemical properties of the analyte. It is suggested that surface energy (wettability) is an important factor controlling droplet behavior on the surface. The experimental data are correlated with critical surface tension values of different materials. It is proposed, based on the results presented, that super-hydrophobic materials with extremely high contact angles have the potential to be excellent DESI substrates. It is also demonstrated, using the example of the neurotransmitter dopamine, that the surface charge that develops during a DESI-MS experiment can cause electrochemical oxidation of the analyte.
International Journal of Mass Spectrometry, 2009
Redox changes occur in some circumstances when organic compounds are analyzed by desorption elect... more Redox changes occur in some circumstances when organic compounds are analyzed by desorption electrospray ionization mass spectrometry (DESI-MS). However, these processes are limited in scope and the data presented here suggest that there are only limited analogies between the redox behavior in DESI and the well-known solution-phase electrochemical processes in standard electrospray ionization (ESI). Positive and negative ion modes were
ABSTRACT We report a microfluidic device, using segmented flow in a two-phase system of immiscibl... more ABSTRACT We report a microfluidic device, using segmented flow in a two-phase system of immiscible liquids, which delivers aqueous droplets into a modified commercial mass spectrometer. The interface coupling the microfluidics to the mass spectrometer achieves up to 96% sample transfer efficiency to the vacuum chamber. Sample ionization is assisted by multipass infrared laser beam in the interface. The system achieves low femtomole detection limits of several analytes ranging from drugs to proteins. Sample ionization in this segmented-flow sampling was found to be remarkably insensitive to the presence of buffer salts and other matrices.
Journal of Bacteriology, 2021
As the emerging threat of multidrug-resistant (MDR) bacteria continues to increase, no new classe... more As the emerging threat of multidrug-resistant (MDR) bacteria continues to increase, no new classes of antibiotics have been discovered in the last 50 years. While previous attempts to inhibit the lipoprotein biosynthetic (LspA) or transport (LolCDE) pathways have been made, most efforts have been hindered by the emergence of a common mechanism leading to resistance, namely, the deletion of the gene encoding a major Gram-negative outer membrane lipoprotein lpp. ABSTRACT Lipoprotein diacylglyceryl transferase (Lgt) catalyzes the first step in the biogenesis of Gram-negative bacterial lipoproteins which play crucial roles in bacterial growth and pathogenesis. We demonstrate that Lgt depletion in a clinical uropathogenic Escherichia coli strain leads to permeabilization of the outer membrane and increased sensitivity to serum killing and antibiotics. Importantly, we identify G2824 as the first-described Lgt inhibitor that potently inhibits Lgt biochemical activity in vitro and is bacter...
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2018
Mass Spectrometry has commonly been used in the semi-conductor industry where maintaining a clean... more Mass Spectrometry has commonly been used in the semi-conductor industry where maintaining a clean environment with minimum contaminants under high vacuum is crucial for successful manufacturing. Since the technology's early usage for pharmaceutical manufacturing in the early '80s, particularly in the freeze-drying environment, much has changed. The focus of the current work is aimed at asking some key questions regarding the maturity of the technology, its challenges and importance of having an application-specific instrument for quantitative process analyses applied to freeze-drying. Furthermore, we compare the use of mass spectrometers in early installations from the 80's with recent experiences of the technology in the production and laboratory environments comparing data from different MS technologies. In addition, the manuscript covers broad application of the technology towards detection of and sensitivity for analytes including silicone oil, Helium and also explor...
Analytical Chemistry, 2016
Journal of Mass Spectrometry, 2015
Journal of Mass Spectrometry, 2012
Journal of Mass Spectrometry, 2011
Scanning electron microscopy was used to investigate rivulets that are formed on the analyzed sur... more Scanning electron microscopy was used to investigate rivulets that are formed on the analyzed surface during desorption electrospray ionization (DESI) experiment. Ferromagnetic nanoparticles added to the spray solvent in a form of colloid solution functioned as an additional surface probe. The existence of the rivulets was confirmed on glass and newly demonstrated on two different types of porous polytetrafluoroethylene (PTFE). The results show that in standard DESI set-up the rivulets are arranged into very regular shapes. Same rivulets were obtained in DESI experiments without high voltage on the sprayer. However, no such rivulets or any other regular patterns were found on a surface in nano-DESI (nanospray DESI without the carrier nebulizing gas) experiments. This indicates that symmetrical rivulets are created by the hydrodynamical rather than electrostatic forces. It was also demonstrated that blocking the rivulets by a simple physical barrier did not influence known surface charging effects.
Journal of biomedical materials research. Part B, Applied biomaterials, 2007
A novel dry process for immobilization of hyaluronan on stainless steel surfaces is presented. Th... more A novel dry process for immobilization of hyaluronan on stainless steel surfaces is presented. This process that we call reactive landing is based on an interaction of hyperthermal gas-phase hyaluronan ions with plasma-cleaned and activated stainless steel surfaces. Reactive landing is performed on a unique instrument that combines an in-situ plasma reactor with an electrospray ion source and ion transfer optics. Gas-phase hyaluronan anions are obtained by electrospray ionization of sodium hyaluronan solutions and immobilized by reactive landing on large-area stainless steel surfaces. The immobilized hyaluronan withstands extensive washing with polar solvents and solutions, and the washed surfaces maintain the protective properties against blood platelet activation. The mechanism of hyaluronan discharge and immobilization is discussed.
Analytical chemistry, 2005
Soft landing on a plasma-treated metal surface of multiply protonated protein ions from the gas p... more Soft landing on a plasma-treated metal surface of multiply protonated protein ions from the gas phase results in a substantial retention of protein function, as demonstrated for trypsin and streptavidin. The majority of trypsin ions soft-landed at hyperthermal kinetic energies are undamaged and retain 72-98% of enzymatic activity after being washed into solution. A small fraction of trypsin ions that were landed at nominal kinetic energies of 130-200 eV remain tethered to the surface and show approximately 50% enzymatic activity. The streptavidin tetramer is found to dissociate to monomer units upon multiple charging in electrospray. The majority of soft-landed monomers can be washed into solution where they show affinity to biotin. The layer of streptavidin monomer that is immobilized on the surface can be detected if fluorescence-tagged and retains the ability to reversibly bind biotin. A mechanism is proposed to explain nondestructive protein ion discharge on the surface that con...
Analytical chemistry, 2005
Soft landing of singly charged gas-phase ions on dry metal surfaces that were pretreated in situ ... more Soft landing of singly charged gas-phase ions on dry metal surfaces that were pretreated in situ by oxygen plasma results in 0.1-2% total yields of recovered intact compounds. Lysine, peptides, crystal violet dye, and a biotin conjugate are found to survive soft landing of hyperthermal ions of up to 50-eV kinetic energy. Soft landing at 40-50-eV ion kinetic energies of a fluorescence-labeled biotin conjugate results in an immobilized fraction that cannot be washed from the surface and is found to contain an intact biotin moiety. The present results represent an approximately 10(4) fold improvement in soft-landing efficiency and indicate that plasma-treated metal surfaces can be useful for preparative separation of organic and biological molecules by mass spectrometry. The substantial improvement in soft-landing yields results from a high transmission of electrosprayed ions into the vacuum system, efficient and nondestructive discharge of ions on the metal oxide surface, and facile a...
Biomicrofluidics, 2014
This paper describes the use of electro-hydrodynamic actuation to control the transition between ... more This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior.
Journal of mass spectrometry : JMS, 2008
We report new experiments in which laser desorption/ionization time-of-flight mass spectrometry (... more We report new experiments in which laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS) was applied to detection and characterization of gramicidin S and IgG pentapeptide (DSDPR) that were reactively landed on plasma-treated stainless steel surfaces. The distributions of [M+H](+), [M+Na](+) and [M + K](+) ion species in LDI-TOF for gramicidin S and IgG pentapeptide (DSDPR) were found to be markedly different from those in conventional MALDI-TOF spectra of the same samples. LDI-TOF mass spectra showed a strong preference for [M+K](+) adducts even in the presence of a large excess of sodium cations, or following surface treatment with trifluoroacetic acid. Alkali metal cations (K(+) and Cs(+)) can be exchanged in reactively landed peptide samples to provide the corresponding cationized peptide ions by LDI. Multiple charged trypsin cations were reactively landed into a layer of 2-(4-hydroxyphenylazo)benzoic acid and ionized by LDI. The ionization mechanisms for LDI...
Journal of The American Society for Mass Spectrometry, 2009
Zirconium, titanium, and hafnium oxide-coated stainless steel surfaces are fabricated by reactive... more Zirconium, titanium, and hafnium oxide-coated stainless steel surfaces are fabricated by reactive landing of gas-phase ions produced by electrospray ionization of group IVB metal alkoxides. The surfaces are used for in situ enrichment of phosphopeptides before analysis by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. To evaluate this method we characterized ZrO2 (zirconia) surfaces by (1) comparison with the other
Analytical and Bioanalytical Chemistry, 2014
Fabry disease is an X-linked lysosomal storage disease due to deficient α-galactosidase A (α-Gal ... more Fabry disease is an X-linked lysosomal storage disease due to deficient α-galactosidase A (α-Gal A) activity and the resultant lysosomal accumulation of globotriaosylceramide (Gb3) and related lipids primarily in blood vessels, kidney, heart, and other organs. The renal distribution of stored glycolipid species in the α-Gal A knockout mouse model was compared to that in mice to assess relative distribution and absolute amounts of accumulated sphingolipid isoforms. Twenty isoforms of five sphingolipid groups were visualized by mass spectrometry imaging (MSI), and their distribution was compared with immunohistochemical (IHC) staining of Gb3, the major stored glycosphingolipid in consecutive tissue sections. Quantitative bulk lipid analysis of tissue sections was assessed by electrospray ionization with tandem mass spectrometry (ESI-MS/MS). In contrast to the findings in wild-type mice, all three analytical techniques (MSI, IHC, and ESI-MS/MS) revealed increases in Gb3 isoforms and ceramide dihexosides (composed mostly of galabiosylceramides), respectively. To our knowledge, this is the first report of the distribution of individual molecular species of Gb3 and galabiosylceramides in kidney sections in Fabry disease mouse. In addition, the spatial distribution of ceramides, ceramide monohexosides, and sphingomyelin forms in renal tissue is presented and discussed in the context of their biosynthesis.
Analytical Chemistry, 2007
The Analyst, 2003
Conventional electrothermal atomic absorption spectrometric (ETAAS) equipment was extensively mod... more Conventional electrothermal atomic absorption spectrometric (ETAAS) equipment was extensively modified to enable automated in situ electrodeposition. The original autosampler injection Teflon capillary was replaced by a composite Pt/Teflon capillary which served as an anode in the electrodeposition circuit. Incorporation of a peristaltic pump and of a three-way solenoid under computer control into the sample dispenser circuit provided all necessary steps for automated electrodeposition-ETAAS determination. The automated sequence controlled addition of Pd modifier and of the analyte, electrolysis, withdrawal of spent electrolyte, rinsing, drying and atomization. Performance of the system was evaluated by analyzing Pb in 3% m/v NaCl. Optimization using factorial design yielded 3sigma detection limit of 20 pg Pb and reproducibility of 1.0-1.4% (for constant current electrodeposition), these values being superior to the results of conventional ETAAS of Pb in 0.5% m/v NaCl. Sensitivity of Pb determination is not affected by NaCl, NaOH, NaNO3 and NH4H2PO4, up to 4.6% m/v, demonstrating efficient matrix removal in the electrodeposition step.
The Analyst, 2008
Time resolved measurements show that during a desorption electrospray ionization (DESI) experimen... more Time resolved measurements show that during a desorption electrospray ionization (DESI) experiment, the current initially rises sharply, followed by an exponential decrease to a relatively steady current. When the high voltage on the spray emitter is switched off, the current drops to negative values, suggesting that the direction of current flow in the equivalent DESI circuit is reversed. These data demonstrate that the DESI source behaves as a dc capacitor and that the addition of a surface between the sprayer and the counter electrode in DESI introduces a new electrically active element into the system. The charging and discharging behavior was observed using different surfaces and it could be seen both by making current measurements on a plate at the entrance to the mass spectrometer as well as by measuring ion current in the linear ion trap within the vacuum system of the mass spectrometer. The magnitude of the steady state current obtained without analyte present on the surface is different for different surface materials, and different capacitor time constants of the equivalent RC circuits were calculated for different DESI surfaces. The PTFE surface has by far the greatest time constant and is also able to produce the highest DESI currents. Surface properties play a crucial role in charge transfer during DESI in addition to the effects of the chemical properties of the analyte. It is suggested that surface energy (wettability) is an important factor controlling droplet behavior on the surface. The experimental data are correlated with critical surface tension values of different materials. It is proposed, based on the results presented, that super-hydrophobic materials with extremely high contact angles have the potential to be excellent DESI substrates. It is also demonstrated, using the example of the neurotransmitter dopamine, that the surface charge that develops during a DESI-MS experiment can cause electrochemical oxidation of the analyte.
International Journal of Mass Spectrometry, 2009
Redox changes occur in some circumstances when organic compounds are analyzed by desorption elect... more Redox changes occur in some circumstances when organic compounds are analyzed by desorption electrospray ionization mass spectrometry (DESI-MS). However, these processes are limited in scope and the data presented here suggest that there are only limited analogies between the redox behavior in DESI and the well-known solution-phase electrochemical processes in standard electrospray ionization (ESI). Positive and negative ion modes were
Clinical Chemistry, 2015
Recent studies show that the haptoglobin phenotype in individuals with diabetes mellitus is an im... more Recent studies show that the haptoglobin phenotype in individuals with diabetes mellitus is an important factor for predicting the risk of myocardial infarction, cardiovascular death, and stroke. Current methods for haptoglobin phenotyping include PCR and gel electrophoresis. A need exists for a reliable method for high-throughput clinical applications. Mass spectrometry (MS) can in principal provide fast phenotyping because haptoglobin α 1 and α 2, which define the phenotype, have different molecular masses. Because of the complexity of the serum matrix, an efficient and fast enrichment technique is necessary for an MS-based assay. MALDI plates were functionalized by ambient ion landing of electrosprayed antihaptoglobin antibody. The array was deposited on standard indium tin oxide slides. Fast immunoaffinity enrichment was performed in situ on the plate, which was further analyzed by MALDI-TOF MS. The haptoglobin phenotype was determined from the spectra by embedded software script. The MALDI mass spectra showed ion signals of haptoglobin α subunits at m/z 9192 and at m/z 15ü945. A cohort of 116 sera was analyzed and the reliability of the method was confirmed by analyzing the identical samples by Western blot. One hundred percent overlap of results between the direct immunoaffinity desorption/ionization MS and Western Blot analysis was found. MALDI plates modified by antihaptoglobin antibody using ambient ion landing achieve low nonspecific interactions and efficient MALDI ionization and are usable for quick haptoglobin phenotyping.
Analytical Chemistry, 2011
This work reports on a new and extremely simple approach for determination of a double bond posit... more This work reports on a new and extremely simple approach for determination of a double bond position by a laser desorption ionization mass spectrometry. It is solely based on the catalytic properties of nanostructured surfaces used in nanoassisted laser desorption ionization experiments. These surfaces can induce oxidation of analytes, which results in a mass shift that can be detected by mass spectrometry. If a site of unsaturation is oxidized and cleaved, the m/z difference is diagnostic of the position of a double bond. By demonstrating that the oxidation depends on the analyte surface dwell time, it was proven that it is caused by the surface activity and not by the laser desorption ionization process itself. Control matrix-assisted laser desorption/ionization (MALDI) experiment showed only a limited partial oxidation and no time dependency of the process. The ability to determine a position of a double bond was demonstrated on polyunsaturated phospholipids and cyclosporine A. In some other cases, however, the unexpected oxidation could cause confusion, as demonstrated for a glycosphingolipid from a porcine brain extract.
European journal of mass spectrometry (Chichester, England), 2015
The lateral lipid distribution in eye lenses of three human donors were studied by matrix-assiste... more The lateral lipid distribution in eye lenses of three human donors were studied by matrix-assisted laser desorption ionization imaging mass spectrometry using a high mass resolution. By using exact mass measurements this study shows the relationship between the aging process and the number of lipids detected as well as between aging and the abundance of products derived from sphingomyelins by hydrolysis. Variable lipid composition was also observed in the nuclear, barrier, or cortex regions of the lens samples. This is the first study that suggests the distribution of lysolipids as a potential biomarker panel for the aging of human lens tissue.
Analytical Chemistry, 2009