Volvo Hybrid Environmental Concept Car (original) (raw)
In the very early 1990s, almost all activities that focused on electric drive involved battery electric vehicles. While there was some early exploration into hybrid drive, this was clearly taking a back seat to what most considered the ultimate challenge with possibly the biggest payback: the all-electric vehicle. Then Volvo stunned everyone with the debut of its high-speed turbine hybrid Environmental Concept Car, a groundbreaking design that still resonates today. This report is reprinted just as it ran in Green Car's February 1993 issue to share our editors' thoughts on this vehicle and its impact at the time.
VOLVO ECC A CHALLENGE TO THE ZERO-EMISSION CONCEPT
ORIGINALLY PUBLISHED FEBRUARY 1993
It's interesting to note the diverse ways the world's automakers are responding to California's "zero-emission" vehicle mandate that takes effect in just five short years. By most accounts, the majority are involved in intense research and development of battery-powered electric cars that will meet the letter of the law.
Volvo, on the other hand, has a different view. This Swedish automaker, which built a stunning serial hybrid EV called the Volvo Environmental Concept Car, seeks a revision in the California legislative model that would specifically allow electric hybrids under the ZEV category. While this seems to make sense in some ways, it is also highly problematic in others. Some would argue that hybrids could present a regulatory nightmare since it would be difficult, if not impossible, to monitor whether drivers were actually running on straight electric or hybrid power in future urban zero-emission zones.
"Our goal, of course, was to meet the zero emitting vehicle standard that California has set," says Sylvia Voegele, general manager of Volvo's Monitoring and Concept Center in Camarillo, Calif. "As we studied what consumers want, wish versus reality - we discovered that there were some fabulous pros for the electric car, but there was also a long list of negatives. Since we had to come up with a family vehicle which seats four people-plus, naturally we had a range problem. So our solution could not be with the given technology of today - the straight electric car - which appears to be the only solution to deliver a zero emission vehicle. So we settled for a hybrid.
"We felt that this hybrid solution gave us the best of both worlds," continues Voegele. "It could be a zero-emitting vehicle for inner city driving or for shorter trips. Plus it could be, with a far better extender range, the vehicle you could drive to Las Vegas if you wish." The ECC's short 55 mile all-electric range is admittedly limiting, but may meet the requirements of those commuting average distances to the workplace. In this configuration the ECC does meet the strict ZEV standard.
The benefit of Volvo's hybrid approach is realized whenever lengthier drives are required. Using the ECC's small gas turbine/generator to power the car's 76 horsepower (56 kW) electric motor provides a range greater than 400 miles, and at emission levels that meet California's ultra-low emission vehicle (ULEV) standard. Running on turbine-generated electrical power also provides 0-60 mph acceleration of about 13 seconds, much quicker than the ECC's 23-second 0-60 mph acceleration times on battery power alone. Again, the slower acceleration would seem to be in a range acceptable within more crowded urban areas, while quicker turbine/generator-inspired sprints seem more in tune with the needs of open-road touring.
"The zero emitting vehicle to us is somewhat artificial because you still have emissions at the powerplants," says Stephen Wallman, director of Complete Vehicle Product and Process at Volvo Car Corp. "Especially when you introduce global thinking, it doesn't really matter too much if the powerplant is a little outside Los Angeles or in Los Angeles."
Still, why would Volvo pursue development of a proof-of-concept vehicle that may not qualify to fulfill what could be a huge niche market for ZEVs' "One way of looking at it is that it's driven by customer demand," says Wallman of the ECC. "It is one way of overcoming the shortfalls of straight electric vehicles. It has the possibility, with a super-clean heat engine and very efficient energy conversion to electric power, to give very low emissions and good fuel economy levels. It still depends on battery technology, but to a much lesser extent. In our view this makes hybrid propulsion the most realistic alternative in the middle range."
It remains to be seen how well a production vehicle like the Volvo ECC could weather the zero-emission regulatory climate already in place in California, New York, Massachusetts, and coming soon to other states. With many R&D; efforts developing serial hybrid EVs, and the U.S. Department of Energy embarking on a funding program for their development, it seems at least plausible that hybrids may have a place in our future. What that place may be, and to what extent they'll be used in a zero-emission strategy, is an interesting question that's yet to be answered.
�