Zhen-yu Zhou | Weill Cornell Medicine (original) (raw)
Papers by Zhen-yu Zhou
Neuroscience, 1999
To investigate a physiological role of glutathione in the horizontal cells of carp retina, the ga... more To investigate a physiological role of glutathione in the horizontal cells of carp retina, the gap junctional intercellular communication between horizontal cells was studied using the techniques of intracellular recording of light-induced responses and coupling of the fluorescence dye Lucifer Yellow. Intravitreal injection of 2.5 micromol L-buthionine sulfoximine, an inhibitor of glutathione synthesis, induced a dramatic reduction (20% of control) of retinal glutathione level two days after treatment. The low level of glutathione continued for a further four to five days, and thereafter gradually recovered to about 40% (20 days after injection) and 70% (50 days after injection) of the control level. The spatial properties of the photopic L-type horizontal cell response were examined by enlarging the diameter of the central spot and peripheral annulus over the recording point. In normal retinas, the response amplitude of horizontal cells was monotonically enhanced as the diameter of the spot increased (0.5-4.0 mm) and correspondingly the dye diffusion area was wide, as the injected Lucifer Yellow normally diffused to several neighboring cells. Treatment with L-buthionine sulfoximine significantly altered the spatial properties of horizontal cells by increasing the response amplitude to central spots and slightly decreasing that to peripheral annuli, which were observed by four days after injection. It also restricted intracellular Lucifer Yellow to one or two cells. Accompanying the recovery of the cellular level of glutathione, the spatial properties and dye coupling of horizontal cells were restored to normal. A time lag (two days) of initiation in retinal glutathione depletion and alteration of spatial or dye coupling properties of horizontal cells is discussed, together with reactive oxygen species accumulation.
eneuro, 2019
Volatile anesthetics affect neuronal signaling by poorly understood mechanisms. Activation of cen... more Volatile anesthetics affect neuronal signaling by poorly understood mechanisms. Activation of central dopaminergic pathways has been implicated in emergence from general anesthesia. The volatile anesthetic isoflurane differentially inhibits glutamatergic and GABAergic synaptic vesicle (SV) exocytosis by reducing presynaptic Ca2+influx without affecting the Ca2+-exocytosis relationship, but its effects on dopaminergic exocytosis are unclear. We tested the hypothesis that isoflurane inhibits exocytosis in dopaminergic neurons. We used electrical stimulation or depolarization by elevated extracellular KCl to evoke exocytosis measured by quantitative live-cell fluorescence imaging in cultured rat ventral tegmental area neurons. Using trains of electrically evoked action potentials (APs), isoflurane inhibited exocytosis in dopaminergic neurons to a greater extent (30 ± 4% inhibition;p< 0.0001) than in non-dopaminergic neurons (15 ± 5% inhibition;p= 0.014). Isoflurane also inhibited ex...
Scientific Reports, 2021
Retinoid X receptors are members of the nuclear receptor family that regulate gene expression in ... more Retinoid X receptors are members of the nuclear receptor family that regulate gene expression in response to retinoic acid and related ligands. Group 1 metabotropic glutamate receptors are G-protein coupled transmembrane receptors that activate intracellular signaling cascades in response to the neurotransmitter, glutamate. These two classes of molecules have been studied independently and found to play important roles in regulating neuronal physiology with potential clinical implications for disorders such as depression, schizophrenia, Parkinson’s and Alzheimer’s disease. Here we show that mice lacking the retinoid X receptor subunit, RXRγ, exhibit impairments in group 1 mGluR-mediated electrophysiological responses at hippocampal Schaffer collateral-CA1 pyramidal cell synapses, including impaired group 1 mGluR-dependent long-term synaptic depression (LTD), reduced group 1 mGluR-induced calcium release, and loss of group 1 mGluR-activated voltage-sensitive currents. These animals a...
Anesthesiology, 2016
Background Evidence indicates that the anesthetic-sparing effects of α2-adrenergic receptor (AR) ... more Background Evidence indicates that the anesthetic-sparing effects of α2-adrenergic receptor (AR) agonists involve α2A-AR heteroreceptors on nonadrenergic neurons. Since volatile anesthetics inhibit neurotransmitter release by reducing synaptic vesicle (SV) exocytosis, the authors hypothesized that α2-AR agonists inhibit nonadrenergic SV exocytosis and thereby potentiate presynaptic inhibition of exocytosis by isoflurane. Methods Quantitative imaging of fluorescent biosensors of action potential–evoked SV exocytosis (synaptophysin-pHluorin) and Ca2+ influx (GCaMP6) were used to characterize presynaptic actions of the clinically used α2-AR agonists dexmedetomidine and clonidine, and their interaction with isoflurane, in cultured rat hippocampal neurons. Results Dexmedetomidine (0.1 μM, n = 10) or clonidine (0.5 μM, n = 8) inhibited action potential–evoked exocytosis (54 ± 5% and 59 ± 8% of control, respectively; P < 0.001). Effects on exocytosis were blocked by the subtype-nonselec...
Proceedings of the National Academy of Sciences, 2015
Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effe... more Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effects on synaptic transmission. We show that the volatile anesthetic isoflurane inhibits synaptic vesicle (SV) exocytosis at nerve terminals in dissociated rat hippocampal neurons through inhibition of presynaptic Ca2+ influx without significantly altering the Ca2+ sensitivity of SV exocytosis. A clinically relevant concentration of isoflurane (0.7 mM) inhibited changes in [Ca2+]i driven by single action potentials (APs) by 25 ± 3%, which in turn led to 62 ± 3% inhibition of single AP-triggered exocytosis at 4 mM extracellular Ca2+ ([Ca2+]e). Lowering external Ca2+ to match the isoflurane-induced reduction in Ca2+ entry led to an equivalent reduction in exocytosis. These data thus indicate that anesthetic inhibition of neurotransmitter release from small SVs occurs primarily through reduced axon terminal Ca2+ entry without significant direct effects on Ca2+-exocytosis coupling or on the SV...
Journal of Neurophysiology, 2006
The mouse is an important model system for understanding the molecular basis of neuronal signalin... more The mouse is an important model system for understanding the molecular basis of neuronal signaling and diseases of synaptic communication. However, the best-characterized retinal ribbon-style synapses are those of nonmammalian vertebrates. To remedy this situation, we asked whether it would be feasible to track synaptic vesicle dynamics in the isolated mouse rod bipolar cell using time-resolved capacitance measurements. The results demonstrate that membrane depolarization triggered an increase in membrane capacitance that was Ca2+ dependent and restricted to the synaptic compartment, consistent with exocytosis. The amplitude of the capacitance response recorded from the easily accessible soma of an intact mouse rod bipolar cell was identical to that recorded directly from the small synaptic terminal, suggesting that in the carefully selected cohort of cells presented here, axonal resistance was not a significant barrier to current flow. This supposition was supported by the analysis...
Journal of Neuroscience, 2006
Postsynaptic alterations have been suggested to account for NMDA receptor (NMDAR)-dependent long-... more Postsynaptic alterations have been suggested to account for NMDA receptor (NMDAR)-dependent long-term depression (LTD) and long-term potentiation of synaptic strength, although there is substantial evidence supporting changes in presynaptic release. Direct chemical activation of either NMDA or group I metabotropic glutamate receptor (mGluR1) elicits LTD of similar magnitudes, but it is unknown whether they share common expression mechanisms. Using dual-photon laser-scanning microscopy of FM1-43 [N-(3triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide] to directly visualize presynaptic vesicular release from the rapidly recycling vesicle pool (RRP) at Schaffer collateral terminals in field CA1 of rat hippocampal slices, we found that a persistent reduction in vesicular release from the RRP is induced by NMDA-LTD but not by mGluR1-LTD. Variance-mean analyses of Schaffer collateral release probability (P r) at varying extracellular calcium concentrations confirmed that NMDA-LTD was associated with reduced P r , whereas mGluR1-LTD was not. Pharmacological isolation of NMDAR-dependent and mGluR-dependent forms of stimulusevoked LTD revealed that both are composed of a combination of presynaptic and postsynaptic alterations. However, when group I mGluR-dependent LTD was isolated by combining an NMDAR blocker with a group II mGluR antagonist, this form of LTD was purely postsynaptic. The nitric oxide synthase inhibitor N-nitro-L-arginine blocked the induction of NMDA-LTD but did not alter mGluR-LTD, consistent with a selective role for nitric oxide as a retrograde messenger mediating NMDA-LTD. These data demonstrate that single synapses can express multiple forms of LTD with different sites of expression, that NMDA-LTD is a combination of presynaptic and postsynaptic alterations, but that group I mGluR-LTD appears to be expressed entirely postsynaptically.
Visual Neuroscience, 2008
To better understand synaptic signaling at the mammalian rod bipolar cell terminal and pave the w... more To better understand synaptic signaling at the mammalian rod bipolar cell terminal and pave the way for applying genetic approaches to the study of visual information processing in the mammalian retina, synaptic vesicle dynamics and intraterminal calcium were monitored in terminals of acutely isolated mouse rod bipolar cells and the number of ribbon-style active zones quantified. We identified a releasable pool, corresponding to a maximum of 7 s. The presence of a smaller, rapidly releasing pool and a small, fast component of refilling was also suggested. Following calcium channel closure, membrane surface area was restored to baseline with a time constant that ranged from 2 to 21 s depending on the magnitude of the preceding Ca2+ transient. In addition, a brief, calcium-dependent delay often preceded the start of onset of membrane recovery. Thus, several aspects of synaptic vesicle dynamics appear to be conserved between rod-dominant bipolar cells of fish and mammalian rod bipolar cells. A major difference is that the number of vesicles available for release is significantly smaller in the mouse rod bipolar cell, both as a function of the total number per neuron and on a per active zone basis.
Learning & Memory, 2008
Cyclic AMP signaling plays a central role in regulating activity at a number of synapses in the b... more Cyclic AMP signaling plays a central role in regulating activity at a number of synapses in the brain. We showed previously that pairing activation of receptors that inhibit adenylate cyclase (AC) and reduce the concentration of cyclic AMP, with elevation of the concentration of cyclic GMP is sufficient to elicit a presynaptically expressed form of LTD at Schaffer collateral-CA1 synapses in the hippocampus. To directly test the role of AC inhibition and G-protein signaling in LTD at these synapses, we utilized transgenic mice that express a mutant, constitutively active inhibitory G protein, G␣ i2 , in principal neurons of the forebrain. Transgene expression of G␣ i2 markedly enhanced LTD and impaired late-phase LTP at Schaffer collateral synapses, with no associated differences in input/output relations, paired-pulse facilitation, or NMDA receptor-gated conductances. When paired with application of a type V phosphodiesterase inhibitor to elevate the concentration of intracellular cyclic GMP, constitutively active G␣ i2 expression converted the transient depression normally caused by this treatment to an LTD that persisted after the drug was washed out. Moreover, this effect could be mimicked in control slices by pairing type V phosphodiesterase inhibitor application with application of a PKA inhibitor. Electrophysiological recordings of spontaneous excitatory postsynaptic currents and two-photon visualization of vesicular release using FM1-43 revealed that constitutively active G␣ i2 tonically reduced basal release probability from the rapidly recycling vesicle pool of Schaffer collateral terminals. Our findings support the hypothesis that inhibitory G-protein signaling acts presynaptically to regulate release, and, when paired with elevations in the concentration of cyclic GMP, converts a transient cyclic GMP-induced depression into a long-lasting decrease in release. ; fax (914) 594-4653. Article is online at
Journal of Neurophysiology, 2002
Membrane retrieval following exocytosis in synaptic terminals is fast and compensatory, however, ... more Membrane retrieval following exocytosis in synaptic terminals is fast and compensatory, however, little is known about the factors that regulate or contribute to this special form of endocytosis. We used whole-terminal capacitance measurements to examine the effect of hydrostatic pressure on compensatory endocytosis in single synaptic terminals of retinal bipolar neurons. We report that a small increase in hydrostatic pressure reversibly inhibits compensatory endocytosis. Elevation in hydrostatic pressure does not block all membrane retrieval, however. A small, fast component of endocytosis persists, while a slower component is inhibited. When the hydrostatic pressure is then stepped back to a near-neutral setting, an even slower form of endocytosis is observed that restores the resting membrane capacitance to baseline. Thus even when endocytosis is temporally uncoupled from calcium entry and exocytosis, it can still be compensatory, indicating that presynaptic surface area is highly regulated. Our results suggest that at least two distinct mechanisms of membrane retrieval contribute to compensatory endocytosis. Given its dramatic inhibitory effect on membrane retrieval, we suggest that hydrostatic pressure be carefully controlled when studying endocytosis in the whole cell recording configuration.
Brain, 2012
In searching for persistent seizure-induced alterations in brain function that might be causally ... more In searching for persistent seizure-induced alterations in brain function that might be causally related to epilepsy, presynaptic transmitter release has relatively been neglected. To measure directly the long-term effects of pilocarpine-induced status epilepticus on vesicular release and recycling in hippocampal mossy fibre presynaptic boutons, we used (i) two-photon imaging of FM1-43 vesicular release in rat hippocampal slices; and (ii) transgenic mice expressing the genetically encoded pH-sensitive fluorescent reporter synaptopHluorin preferentially at glutamatergic synapses. In this study we found that, 1-2 months after pilocarpine-induced status epilepticus, there were significant increases in mossy fibre bouton size, faster rates of action potential-driven vesicular release and endocytosis. We also analysed the ultrastructure of rat mossy fibre boutons using transmission electron microscopy. Pilocarpine-induced status epilepticus led to a significant increase in the number of release sites, active zone length, postsynaptic density area and number of vesicles in the readily releasable and recycling pools, all correlated with increased release probability. Our data show that presynaptic release machinery is persistently altered in structure and function by status epilepticus, which could contribute to the development of the chronic epileptic state and may represent a potential new target for antiepileptic therapies.
Postsynaptic alterations have been suggested to account for NMDA receptor (NMDAR)-dependent long-... more Postsynaptic alterations have been suggested to account for NMDA receptor (NMDAR)-dependent long-term depression (LTD) and long-term potentiation of synaptic strength, although there is substantial evidence supporting changes in presynaptic release. Direct chemical activation of either NMDA or group I metabotropic glutamate receptor (mGluR1) elicits LTD of similar magnitudes, but it is unknown whether they share common expression mechanisms. Using dual-photon laser-scanning microscopy of FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide] to directly visualize presynaptic vesicular release from the rapidly recycling vesicle pool (RRP) at Schaffer collateral terminals in field CA1 of rat hippocampal slices, we found that a persistent reduction in vesicular release from the RRP is induced by
BACKGROUND: Evidence indicates that the anesthetic-sparing effects of α2-adrenergic receptor (AR)... more BACKGROUND:
Evidence indicates that the anesthetic-sparing effects of α2-adrenergic receptor (AR) agonists involve α2A-AR heteroreceptors on nonadrenergic neurons. Since volatile anesthetics inhibit neurotransmitter release by reducing synaptic vesicle (SV) exocytosis, the authors hypothesized that α2-AR agonists inhibit nonadrenergic SV exocytosis and thereby potentiate presynaptic inhibition of exocytosis by isoflurane.
METHODS:
Quantitative imaging of fluorescent biosensors of action potential-evoked SV exocytosis (synaptophysin-pHluorin) and Ca influx (GCaMP6) were used to characterize presynaptic actions of the clinically used α2-AR agonists dexmedetomidine and clonidine, and their interaction with isoflurane, in cultured rat hippocampal neurons.
RESULTS:
Dexmedetomidine (0.1 μM, n = 10) or clonidine (0.5 μM, n = 8) inhibited action potential-evoked exocytosis (54 ± 5% and 59 ± 8% of control, respectively; P < 0.001). Effects on exocytosis were blocked by the subtype-nonselective α2-AR antagonist atipamezole or the α2A-AR-selective antagonist BRL 44408 but not by the α2C-AR-selective antagonist JP 1302. Dexmedetomidine inhibited exocytosis and presynaptic Ca influx without affecting Ca coupling to exocytosis, consistent with an effect upstream of Ca-exocytosis coupling. Exocytosis coupled to both N-type and P/Q-type Ca channels was inhibited by dexmedetomidine or clonidine. Dexmedetomidine potentiated inhibition of exocytosis by 0.7 mM isoflurane (to 42 ± 5%, compared to 63 ± 8% for isoflurane alone; P < 0.05).
CONCLUSIONS:
Hippocampal SV exocytosis is inhibited by α2A-AR activation in proportion to reduced Ca entry. These effects are additive with those of isoflurane, consistent with a role for α2A-AR presynaptic heteroreceptor inhibition of nonadrenergic synaptic transmission in the anesthetic-sparing effects of α2A-AR agonists.
Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effe... more Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effects on synaptic transmission. We show that the volatile anesthetic isoflurane inhibits synaptic vesicle (SV) exocytosis at nerve terminals in dissociated rat hippo-campal neurons through inhibition of presynaptic Ca 2+ influx without significantly altering the Ca 2+ sensitivity of SV exocytosis. A clinically relevant concentration of isoflurane (0.7 mM) inhibited changes in [Ca 2+ ] i driven by single action potentials (APs) by 25 ± 3%, which in turn led to 62 ± 3% inhibition of single AP-triggered exocytosis at 4 mM extracellular Ca 2+ ([Ca 2+ ] e). Lowering external Ca 2+ to match the isoflurane-induced reduction in Ca 2+ entry led to an equivalent reduction in exocytosis. These data thus indicate that anesthetic inhibition of neurotransmitter release from small SVs occurs primarily through reduced axon terminal Ca 2+ entry without significant direct effects on Ca 2+-exocytosis coupling or on the SV fusion machinery. Isoflurane inhibition of exocytosis and Ca 2+ influx was greater in glutamatergic compared with GABAergic nerve terminals, consistent with selective inhibition of excitatory synaptic transmission. Such alteration in the balance of excitatory to inhibitory transmission could mediate reduced neu-ronal interactions and network-selective effects observed in the anesthetized central nervous system. GCaMP3 | pHlourin | mechanisms of anesthesia | live cell imaging | presynaptic T he molecular and cellular mechanisms of anesthetic-induced amnesia, unconsciousness and immobilization are incompletely understood, particularly for the modern halogenated ether derivatives like isoflurane. General anesthetics, which are essential to both medical practice and experimental neuroscience, have potent and selective effects on neurotransmission (1), including both presynaptic actions (reduced neurotransmitter release) and postsynaptic actions (modulation of receptor function). These effects contribute to anesthetic-induced reductions in neu-ronal interactions, which are critical to information processing and consciousness (2–4). Knowledge of the fundamental synaptic effects of anesthetics is therefore essential to a molecular and physiological understanding of anesthetic mechanisms, and to development of more selective and safer anesthetics. Although postsynaptic electrophysiological effects of anesthetics can be assessed directly using whole cell recordings and heterologous expression of putative molecular targets, their pre-synaptic actions have been difficult to resolve by conventional approaches that do not clearly discriminate between presynaptic and postsynaptic contributions. Direct evidence for presynaptic effects of volatile anesthetics includes selective inhibition of glu-tamate release from isolated nerve terminals (5, 6) and of synaptic vesicle (SV) exocytosis in intact hippocampal neurons (7). However , it remains controversial whether these effects involve direct inhibition of SV exocytosis itself or of upstream targets (8, 9). Moreover, the mechanism for the greater sensitivity of glutamate release relative to that of other transmitters is unclear. Neurotransmitter release is supralinearly dependent on pre-synaptic Ca 2+ influx due to the highly cooperative binding of Ca 2+ to synaptotagmin 1, the principal neuronal Ca 2+ sensor for triggering vesicular fusion through increases in the probability of exocytosis (Pv) (10, 11). We used sensitive quantitative fluores-cence imaging approaches to characterize the effects of the widely used volatile anesthetic isoflurane on the Ca 2+ sensitivity of SV exocytosis in cultured rat hippocampal neurons. Although glutamate and GABA have distinct postsynaptic actions, differences in the mechanisms and regulation of SV exocytosis from glutamatergic and GABAergic neurons are not well characterized. Because previous studies indicate that glutamate release is more sensitive to inhibition by volatile anesthetics than GABA release (12), we compared the effects of isoflurane on the coupling of Ca 2+ influx to exocytosis in glutamatergic and GABAergic boutons. Our results indicate that the inhibition of SV exocytosis by isoflurane is driven by a reduction in Ca 2+ influx. This reduction occurs without affecting the apparent sensitivity of exocytosis to Ca 2+. Sensitivity of SV exocytosis to isoflurane is therefore determined by presynaptic targets upstream of exocytosis that determine the magnitude of action potential-evoked Ca 2+ influx. Identification of neurotransmitter-selective effects of anesthetics on SV exocytosis is critical for understanding their pathway specific effects on neuronal interactions (13, 14). Results The effects of isoflurane on SV exocytosis were examined using the chimeric reporters of exocytosis vGlut-pHluorin (vG-pH) or synapto-pHlourin (syn-pH) expressed in dissociated rat hippo-campal neurons in the presence of 2 or 4 mM extracellular Ca 2+ ([Ca 2+ ] e). In resting terminals the pHluorin moiety residing in the acidic SV lumen is quenched, but fluoresces upon exocytosis Significance Clarification of the presynaptic actions of general anesthetics is critical to understanding the molecular and cellular mechanisms of their prominent effects on synaptic transmission. We show that the ether anesthetic isoflurane inhibits synaptic vesicle exocytosis through inhibition of presynaptic Ca 2+ influx in the absence of significant alteration of the Ca 2+ sensitivity of exocytosis. The greater inhibition of glutamate release compared with GABA release is explained by the relative anesthetic resistance of Ca 2+ influx in GABAergic boutons, consistent with overall reduction in excitatory synaptic tone.
The mouse is an important model system for understanding the molecular basis of neuronal signalin... more The mouse is an important model system for understanding the molecular basis of neuronal signaling and diseases of synaptic communication. However, the best-characterized retinal ribbon-style synapses are those of nonmammalian vertebrates. To remedy this situation, we asked whether it would be feasible to track synaptic vesicle dynamics in the isolated mouse rod bipolar cell using time-resolved capacitance measurements. The results demonstrate that membrane depolarization triggered an increase in membrane capacitance that was Ca(2+) dependent and restricted to the synaptic compartment, consistent with exocytosis. The amplitude of the capacitance response recorded from the easily accessible soma of an intact mouse rod bipolar cell was identical to that recorded directly from the small synaptic terminal, suggesting that in the carefully selected cohort of cells presented here, axonal resistance was not a significant barrier to current flow. This supposition was supported by the analysis of passive membrane properties and a comparison of membrane capacitance measurements in cells with and without synaptic terminals and reinforced by the lack of an effect of sine-wave frequency (200-1,600 Hz) on the measured capacitance increase. The magnitude of the capacitance response increased with Ca(2+) entry until a plateau was reached at a spatially averaged intraterminal calcium of about 600 nM. We interpret this plateau, nominally 30 fF, as corresponding to a releasable pool of synaptic vesicles. The robustness of this measure suggests that capacitance measurements may be used in the mouse rod bipolar cell to compare pool size across treatment conditions.
Synaptic vesicle 2 (SV2) proteins, critical for proper nervous system function, are implicated in... more Synaptic vesicle 2 (SV2) proteins, critical for proper nervous system function, are implicated in human epilepsy, yet little is known about their function. We demonstrate, using direct approaches, that loss of the major SV2 isoform in a central nervous system nerve terminal is associated with an elevation in both resting and evoked presynaptic Ca(2+) signals. This increase is essential for the expression of the SV2B(-/-) secretory phenotype, characterized by changes in synaptic vesicle dynamics, synaptic plasticity, and synaptic strength. Short-term reproduction of the Ca(2+) phenotype in wild-type nerve terminals reproduces almost all aspects of the SV2B(-/-) secretory phenotype, while rescue of the Ca(2+) phenotype in SV2B(-/-) neurons relieves every facet of the SV2B(-/-) secretory phenotype. Thus, SV2 controls key aspects of synaptic functionality via its ability to regulate presynaptic Ca(2+), suggesting a potential new target for therapeutic intervention in the treatment of epilepsy.
Neuroscience, 1999
To investigate a physiological role of glutathione in the horizontal cells of carp retina, the ga... more To investigate a physiological role of glutathione in the horizontal cells of carp retina, the gap junctional intercellular communication between horizontal cells was studied using the techniques of intracellular recording of light-induced responses and coupling of the fluorescence dye Lucifer Yellow. Intravitreal injection of 2.5 micromol L-buthionine sulfoximine, an inhibitor of glutathione synthesis, induced a dramatic reduction (20% of control) of retinal glutathione level two days after treatment. The low level of glutathione continued for a further four to five days, and thereafter gradually recovered to about 40% (20 days after injection) and 70% (50 days after injection) of the control level. The spatial properties of the photopic L-type horizontal cell response were examined by enlarging the diameter of the central spot and peripheral annulus over the recording point. In normal retinas, the response amplitude of horizontal cells was monotonically enhanced as the diameter of the spot increased (0.5-4.0 mm) and correspondingly the dye diffusion area was wide, as the injected Lucifer Yellow normally diffused to several neighboring cells. Treatment with L-buthionine sulfoximine significantly altered the spatial properties of horizontal cells by increasing the response amplitude to central spots and slightly decreasing that to peripheral annuli, which were observed by four days after injection. It also restricted intracellular Lucifer Yellow to one or two cells. Accompanying the recovery of the cellular level of glutathione, the spatial properties and dye coupling of horizontal cells were restored to normal. A time lag (two days) of initiation in retinal glutathione depletion and alteration of spatial or dye coupling properties of horizontal cells is discussed, together with reactive oxygen species accumulation.
eneuro, 2019
Volatile anesthetics affect neuronal signaling by poorly understood mechanisms. Activation of cen... more Volatile anesthetics affect neuronal signaling by poorly understood mechanisms. Activation of central dopaminergic pathways has been implicated in emergence from general anesthesia. The volatile anesthetic isoflurane differentially inhibits glutamatergic and GABAergic synaptic vesicle (SV) exocytosis by reducing presynaptic Ca2+influx without affecting the Ca2+-exocytosis relationship, but its effects on dopaminergic exocytosis are unclear. We tested the hypothesis that isoflurane inhibits exocytosis in dopaminergic neurons. We used electrical stimulation or depolarization by elevated extracellular KCl to evoke exocytosis measured by quantitative live-cell fluorescence imaging in cultured rat ventral tegmental area neurons. Using trains of electrically evoked action potentials (APs), isoflurane inhibited exocytosis in dopaminergic neurons to a greater extent (30 ± 4% inhibition;p< 0.0001) than in non-dopaminergic neurons (15 ± 5% inhibition;p= 0.014). Isoflurane also inhibited ex...
Scientific Reports, 2021
Retinoid X receptors are members of the nuclear receptor family that regulate gene expression in ... more Retinoid X receptors are members of the nuclear receptor family that regulate gene expression in response to retinoic acid and related ligands. Group 1 metabotropic glutamate receptors are G-protein coupled transmembrane receptors that activate intracellular signaling cascades in response to the neurotransmitter, glutamate. These two classes of molecules have been studied independently and found to play important roles in regulating neuronal physiology with potential clinical implications for disorders such as depression, schizophrenia, Parkinson’s and Alzheimer’s disease. Here we show that mice lacking the retinoid X receptor subunit, RXRγ, exhibit impairments in group 1 mGluR-mediated electrophysiological responses at hippocampal Schaffer collateral-CA1 pyramidal cell synapses, including impaired group 1 mGluR-dependent long-term synaptic depression (LTD), reduced group 1 mGluR-induced calcium release, and loss of group 1 mGluR-activated voltage-sensitive currents. These animals a...
Anesthesiology, 2016
Background Evidence indicates that the anesthetic-sparing effects of α2-adrenergic receptor (AR) ... more Background Evidence indicates that the anesthetic-sparing effects of α2-adrenergic receptor (AR) agonists involve α2A-AR heteroreceptors on nonadrenergic neurons. Since volatile anesthetics inhibit neurotransmitter release by reducing synaptic vesicle (SV) exocytosis, the authors hypothesized that α2-AR agonists inhibit nonadrenergic SV exocytosis and thereby potentiate presynaptic inhibition of exocytosis by isoflurane. Methods Quantitative imaging of fluorescent biosensors of action potential–evoked SV exocytosis (synaptophysin-pHluorin) and Ca2+ influx (GCaMP6) were used to characterize presynaptic actions of the clinically used α2-AR agonists dexmedetomidine and clonidine, and their interaction with isoflurane, in cultured rat hippocampal neurons. Results Dexmedetomidine (0.1 μM, n = 10) or clonidine (0.5 μM, n = 8) inhibited action potential–evoked exocytosis (54 ± 5% and 59 ± 8% of control, respectively; P < 0.001). Effects on exocytosis were blocked by the subtype-nonselec...
Proceedings of the National Academy of Sciences, 2015
Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effe... more Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effects on synaptic transmission. We show that the volatile anesthetic isoflurane inhibits synaptic vesicle (SV) exocytosis at nerve terminals in dissociated rat hippocampal neurons through inhibition of presynaptic Ca2+ influx without significantly altering the Ca2+ sensitivity of SV exocytosis. A clinically relevant concentration of isoflurane (0.7 mM) inhibited changes in [Ca2+]i driven by single action potentials (APs) by 25 ± 3%, which in turn led to 62 ± 3% inhibition of single AP-triggered exocytosis at 4 mM extracellular Ca2+ ([Ca2+]e). Lowering external Ca2+ to match the isoflurane-induced reduction in Ca2+ entry led to an equivalent reduction in exocytosis. These data thus indicate that anesthetic inhibition of neurotransmitter release from small SVs occurs primarily through reduced axon terminal Ca2+ entry without significant direct effects on Ca2+-exocytosis coupling or on the SV...
Journal of Neurophysiology, 2006
The mouse is an important model system for understanding the molecular basis of neuronal signalin... more The mouse is an important model system for understanding the molecular basis of neuronal signaling and diseases of synaptic communication. However, the best-characterized retinal ribbon-style synapses are those of nonmammalian vertebrates. To remedy this situation, we asked whether it would be feasible to track synaptic vesicle dynamics in the isolated mouse rod bipolar cell using time-resolved capacitance measurements. The results demonstrate that membrane depolarization triggered an increase in membrane capacitance that was Ca2+ dependent and restricted to the synaptic compartment, consistent with exocytosis. The amplitude of the capacitance response recorded from the easily accessible soma of an intact mouse rod bipolar cell was identical to that recorded directly from the small synaptic terminal, suggesting that in the carefully selected cohort of cells presented here, axonal resistance was not a significant barrier to current flow. This supposition was supported by the analysis...
Journal of Neuroscience, 2006
Postsynaptic alterations have been suggested to account for NMDA receptor (NMDAR)-dependent long-... more Postsynaptic alterations have been suggested to account for NMDA receptor (NMDAR)-dependent long-term depression (LTD) and long-term potentiation of synaptic strength, although there is substantial evidence supporting changes in presynaptic release. Direct chemical activation of either NMDA or group I metabotropic glutamate receptor (mGluR1) elicits LTD of similar magnitudes, but it is unknown whether they share common expression mechanisms. Using dual-photon laser-scanning microscopy of FM1-43 [N-(3triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide] to directly visualize presynaptic vesicular release from the rapidly recycling vesicle pool (RRP) at Schaffer collateral terminals in field CA1 of rat hippocampal slices, we found that a persistent reduction in vesicular release from the RRP is induced by NMDA-LTD but not by mGluR1-LTD. Variance-mean analyses of Schaffer collateral release probability (P r) at varying extracellular calcium concentrations confirmed that NMDA-LTD was associated with reduced P r , whereas mGluR1-LTD was not. Pharmacological isolation of NMDAR-dependent and mGluR-dependent forms of stimulusevoked LTD revealed that both are composed of a combination of presynaptic and postsynaptic alterations. However, when group I mGluR-dependent LTD was isolated by combining an NMDAR blocker with a group II mGluR antagonist, this form of LTD was purely postsynaptic. The nitric oxide synthase inhibitor N-nitro-L-arginine blocked the induction of NMDA-LTD but did not alter mGluR-LTD, consistent with a selective role for nitric oxide as a retrograde messenger mediating NMDA-LTD. These data demonstrate that single synapses can express multiple forms of LTD with different sites of expression, that NMDA-LTD is a combination of presynaptic and postsynaptic alterations, but that group I mGluR-LTD appears to be expressed entirely postsynaptically.
Visual Neuroscience, 2008
To better understand synaptic signaling at the mammalian rod bipolar cell terminal and pave the w... more To better understand synaptic signaling at the mammalian rod bipolar cell terminal and pave the way for applying genetic approaches to the study of visual information processing in the mammalian retina, synaptic vesicle dynamics and intraterminal calcium were monitored in terminals of acutely isolated mouse rod bipolar cells and the number of ribbon-style active zones quantified. We identified a releasable pool, corresponding to a maximum of 7 s. The presence of a smaller, rapidly releasing pool and a small, fast component of refilling was also suggested. Following calcium channel closure, membrane surface area was restored to baseline with a time constant that ranged from 2 to 21 s depending on the magnitude of the preceding Ca2+ transient. In addition, a brief, calcium-dependent delay often preceded the start of onset of membrane recovery. Thus, several aspects of synaptic vesicle dynamics appear to be conserved between rod-dominant bipolar cells of fish and mammalian rod bipolar cells. A major difference is that the number of vesicles available for release is significantly smaller in the mouse rod bipolar cell, both as a function of the total number per neuron and on a per active zone basis.
Learning & Memory, 2008
Cyclic AMP signaling plays a central role in regulating activity at a number of synapses in the b... more Cyclic AMP signaling plays a central role in regulating activity at a number of synapses in the brain. We showed previously that pairing activation of receptors that inhibit adenylate cyclase (AC) and reduce the concentration of cyclic AMP, with elevation of the concentration of cyclic GMP is sufficient to elicit a presynaptically expressed form of LTD at Schaffer collateral-CA1 synapses in the hippocampus. To directly test the role of AC inhibition and G-protein signaling in LTD at these synapses, we utilized transgenic mice that express a mutant, constitutively active inhibitory G protein, G␣ i2 , in principal neurons of the forebrain. Transgene expression of G␣ i2 markedly enhanced LTD and impaired late-phase LTP at Schaffer collateral synapses, with no associated differences in input/output relations, paired-pulse facilitation, or NMDA receptor-gated conductances. When paired with application of a type V phosphodiesterase inhibitor to elevate the concentration of intracellular cyclic GMP, constitutively active G␣ i2 expression converted the transient depression normally caused by this treatment to an LTD that persisted after the drug was washed out. Moreover, this effect could be mimicked in control slices by pairing type V phosphodiesterase inhibitor application with application of a PKA inhibitor. Electrophysiological recordings of spontaneous excitatory postsynaptic currents and two-photon visualization of vesicular release using FM1-43 revealed that constitutively active G␣ i2 tonically reduced basal release probability from the rapidly recycling vesicle pool of Schaffer collateral terminals. Our findings support the hypothesis that inhibitory G-protein signaling acts presynaptically to regulate release, and, when paired with elevations in the concentration of cyclic GMP, converts a transient cyclic GMP-induced depression into a long-lasting decrease in release. ; fax (914) 594-4653. Article is online at
Journal of Neurophysiology, 2002
Membrane retrieval following exocytosis in synaptic terminals is fast and compensatory, however, ... more Membrane retrieval following exocytosis in synaptic terminals is fast and compensatory, however, little is known about the factors that regulate or contribute to this special form of endocytosis. We used whole-terminal capacitance measurements to examine the effect of hydrostatic pressure on compensatory endocytosis in single synaptic terminals of retinal bipolar neurons. We report that a small increase in hydrostatic pressure reversibly inhibits compensatory endocytosis. Elevation in hydrostatic pressure does not block all membrane retrieval, however. A small, fast component of endocytosis persists, while a slower component is inhibited. When the hydrostatic pressure is then stepped back to a near-neutral setting, an even slower form of endocytosis is observed that restores the resting membrane capacitance to baseline. Thus even when endocytosis is temporally uncoupled from calcium entry and exocytosis, it can still be compensatory, indicating that presynaptic surface area is highly regulated. Our results suggest that at least two distinct mechanisms of membrane retrieval contribute to compensatory endocytosis. Given its dramatic inhibitory effect on membrane retrieval, we suggest that hydrostatic pressure be carefully controlled when studying endocytosis in the whole cell recording configuration.
Brain, 2012
In searching for persistent seizure-induced alterations in brain function that might be causally ... more In searching for persistent seizure-induced alterations in brain function that might be causally related to epilepsy, presynaptic transmitter release has relatively been neglected. To measure directly the long-term effects of pilocarpine-induced status epilepticus on vesicular release and recycling in hippocampal mossy fibre presynaptic boutons, we used (i) two-photon imaging of FM1-43 vesicular release in rat hippocampal slices; and (ii) transgenic mice expressing the genetically encoded pH-sensitive fluorescent reporter synaptopHluorin preferentially at glutamatergic synapses. In this study we found that, 1-2 months after pilocarpine-induced status epilepticus, there were significant increases in mossy fibre bouton size, faster rates of action potential-driven vesicular release and endocytosis. We also analysed the ultrastructure of rat mossy fibre boutons using transmission electron microscopy. Pilocarpine-induced status epilepticus led to a significant increase in the number of release sites, active zone length, postsynaptic density area and number of vesicles in the readily releasable and recycling pools, all correlated with increased release probability. Our data show that presynaptic release machinery is persistently altered in structure and function by status epilepticus, which could contribute to the development of the chronic epileptic state and may represent a potential new target for antiepileptic therapies.
Postsynaptic alterations have been suggested to account for NMDA receptor (NMDAR)-dependent long-... more Postsynaptic alterations have been suggested to account for NMDA receptor (NMDAR)-dependent long-term depression (LTD) and long-term potentiation of synaptic strength, although there is substantial evidence supporting changes in presynaptic release. Direct chemical activation of either NMDA or group I metabotropic glutamate receptor (mGluR1) elicits LTD of similar magnitudes, but it is unknown whether they share common expression mechanisms. Using dual-photon laser-scanning microscopy of FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide] to directly visualize presynaptic vesicular release from the rapidly recycling vesicle pool (RRP) at Schaffer collateral terminals in field CA1 of rat hippocampal slices, we found that a persistent reduction in vesicular release from the RRP is induced by
BACKGROUND: Evidence indicates that the anesthetic-sparing effects of α2-adrenergic receptor (AR)... more BACKGROUND:
Evidence indicates that the anesthetic-sparing effects of α2-adrenergic receptor (AR) agonists involve α2A-AR heteroreceptors on nonadrenergic neurons. Since volatile anesthetics inhibit neurotransmitter release by reducing synaptic vesicle (SV) exocytosis, the authors hypothesized that α2-AR agonists inhibit nonadrenergic SV exocytosis and thereby potentiate presynaptic inhibition of exocytosis by isoflurane.
METHODS:
Quantitative imaging of fluorescent biosensors of action potential-evoked SV exocytosis (synaptophysin-pHluorin) and Ca influx (GCaMP6) were used to characterize presynaptic actions of the clinically used α2-AR agonists dexmedetomidine and clonidine, and their interaction with isoflurane, in cultured rat hippocampal neurons.
RESULTS:
Dexmedetomidine (0.1 μM, n = 10) or clonidine (0.5 μM, n = 8) inhibited action potential-evoked exocytosis (54 ± 5% and 59 ± 8% of control, respectively; P < 0.001). Effects on exocytosis were blocked by the subtype-nonselective α2-AR antagonist atipamezole or the α2A-AR-selective antagonist BRL 44408 but not by the α2C-AR-selective antagonist JP 1302. Dexmedetomidine inhibited exocytosis and presynaptic Ca influx without affecting Ca coupling to exocytosis, consistent with an effect upstream of Ca-exocytosis coupling. Exocytosis coupled to both N-type and P/Q-type Ca channels was inhibited by dexmedetomidine or clonidine. Dexmedetomidine potentiated inhibition of exocytosis by 0.7 mM isoflurane (to 42 ± 5%, compared to 63 ± 8% for isoflurane alone; P < 0.05).
CONCLUSIONS:
Hippocampal SV exocytosis is inhibited by α2A-AR activation in proportion to reduced Ca entry. These effects are additive with those of isoflurane, consistent with a role for α2A-AR presynaptic heteroreceptor inhibition of nonadrenergic synaptic transmission in the anesthetic-sparing effects of α2A-AR agonists.
Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effe... more Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effects on synaptic transmission. We show that the volatile anesthetic isoflurane inhibits synaptic vesicle (SV) exocytosis at nerve terminals in dissociated rat hippo-campal neurons through inhibition of presynaptic Ca 2+ influx without significantly altering the Ca 2+ sensitivity of SV exocytosis. A clinically relevant concentration of isoflurane (0.7 mM) inhibited changes in [Ca 2+ ] i driven by single action potentials (APs) by 25 ± 3%, which in turn led to 62 ± 3% inhibition of single AP-triggered exocytosis at 4 mM extracellular Ca 2+ ([Ca 2+ ] e). Lowering external Ca 2+ to match the isoflurane-induced reduction in Ca 2+ entry led to an equivalent reduction in exocytosis. These data thus indicate that anesthetic inhibition of neurotransmitter release from small SVs occurs primarily through reduced axon terminal Ca 2+ entry without significant direct effects on Ca 2+-exocytosis coupling or on the SV fusion machinery. Isoflurane inhibition of exocytosis and Ca 2+ influx was greater in glutamatergic compared with GABAergic nerve terminals, consistent with selective inhibition of excitatory synaptic transmission. Such alteration in the balance of excitatory to inhibitory transmission could mediate reduced neu-ronal interactions and network-selective effects observed in the anesthetized central nervous system. GCaMP3 | pHlourin | mechanisms of anesthesia | live cell imaging | presynaptic T he molecular and cellular mechanisms of anesthetic-induced amnesia, unconsciousness and immobilization are incompletely understood, particularly for the modern halogenated ether derivatives like isoflurane. General anesthetics, which are essential to both medical practice and experimental neuroscience, have potent and selective effects on neurotransmission (1), including both presynaptic actions (reduced neurotransmitter release) and postsynaptic actions (modulation of receptor function). These effects contribute to anesthetic-induced reductions in neu-ronal interactions, which are critical to information processing and consciousness (2–4). Knowledge of the fundamental synaptic effects of anesthetics is therefore essential to a molecular and physiological understanding of anesthetic mechanisms, and to development of more selective and safer anesthetics. Although postsynaptic electrophysiological effects of anesthetics can be assessed directly using whole cell recordings and heterologous expression of putative molecular targets, their pre-synaptic actions have been difficult to resolve by conventional approaches that do not clearly discriminate between presynaptic and postsynaptic contributions. Direct evidence for presynaptic effects of volatile anesthetics includes selective inhibition of glu-tamate release from isolated nerve terminals (5, 6) and of synaptic vesicle (SV) exocytosis in intact hippocampal neurons (7). However , it remains controversial whether these effects involve direct inhibition of SV exocytosis itself or of upstream targets (8, 9). Moreover, the mechanism for the greater sensitivity of glutamate release relative to that of other transmitters is unclear. Neurotransmitter release is supralinearly dependent on pre-synaptic Ca 2+ influx due to the highly cooperative binding of Ca 2+ to synaptotagmin 1, the principal neuronal Ca 2+ sensor for triggering vesicular fusion through increases in the probability of exocytosis (Pv) (10, 11). We used sensitive quantitative fluores-cence imaging approaches to characterize the effects of the widely used volatile anesthetic isoflurane on the Ca 2+ sensitivity of SV exocytosis in cultured rat hippocampal neurons. Although glutamate and GABA have distinct postsynaptic actions, differences in the mechanisms and regulation of SV exocytosis from glutamatergic and GABAergic neurons are not well characterized. Because previous studies indicate that glutamate release is more sensitive to inhibition by volatile anesthetics than GABA release (12), we compared the effects of isoflurane on the coupling of Ca 2+ influx to exocytosis in glutamatergic and GABAergic boutons. Our results indicate that the inhibition of SV exocytosis by isoflurane is driven by a reduction in Ca 2+ influx. This reduction occurs without affecting the apparent sensitivity of exocytosis to Ca 2+. Sensitivity of SV exocytosis to isoflurane is therefore determined by presynaptic targets upstream of exocytosis that determine the magnitude of action potential-evoked Ca 2+ influx. Identification of neurotransmitter-selective effects of anesthetics on SV exocytosis is critical for understanding their pathway specific effects on neuronal interactions (13, 14). Results The effects of isoflurane on SV exocytosis were examined using the chimeric reporters of exocytosis vGlut-pHluorin (vG-pH) or synapto-pHlourin (syn-pH) expressed in dissociated rat hippo-campal neurons in the presence of 2 or 4 mM extracellular Ca 2+ ([Ca 2+ ] e). In resting terminals the pHluorin moiety residing in the acidic SV lumen is quenched, but fluoresces upon exocytosis Significance Clarification of the presynaptic actions of general anesthetics is critical to understanding the molecular and cellular mechanisms of their prominent effects on synaptic transmission. We show that the ether anesthetic isoflurane inhibits synaptic vesicle exocytosis through inhibition of presynaptic Ca 2+ influx in the absence of significant alteration of the Ca 2+ sensitivity of exocytosis. The greater inhibition of glutamate release compared with GABA release is explained by the relative anesthetic resistance of Ca 2+ influx in GABAergic boutons, consistent with overall reduction in excitatory synaptic tone.
The mouse is an important model system for understanding the molecular basis of neuronal signalin... more The mouse is an important model system for understanding the molecular basis of neuronal signaling and diseases of synaptic communication. However, the best-characterized retinal ribbon-style synapses are those of nonmammalian vertebrates. To remedy this situation, we asked whether it would be feasible to track synaptic vesicle dynamics in the isolated mouse rod bipolar cell using time-resolved capacitance measurements. The results demonstrate that membrane depolarization triggered an increase in membrane capacitance that was Ca(2+) dependent and restricted to the synaptic compartment, consistent with exocytosis. The amplitude of the capacitance response recorded from the easily accessible soma of an intact mouse rod bipolar cell was identical to that recorded directly from the small synaptic terminal, suggesting that in the carefully selected cohort of cells presented here, axonal resistance was not a significant barrier to current flow. This supposition was supported by the analysis of passive membrane properties and a comparison of membrane capacitance measurements in cells with and without synaptic terminals and reinforced by the lack of an effect of sine-wave frequency (200-1,600 Hz) on the measured capacitance increase. The magnitude of the capacitance response increased with Ca(2+) entry until a plateau was reached at a spatially averaged intraterminal calcium of about 600 nM. We interpret this plateau, nominally 30 fF, as corresponding to a releasable pool of synaptic vesicles. The robustness of this measure suggests that capacitance measurements may be used in the mouse rod bipolar cell to compare pool size across treatment conditions.
Synaptic vesicle 2 (SV2) proteins, critical for proper nervous system function, are implicated in... more Synaptic vesicle 2 (SV2) proteins, critical for proper nervous system function, are implicated in human epilepsy, yet little is known about their function. We demonstrate, using direct approaches, that loss of the major SV2 isoform in a central nervous system nerve terminal is associated with an elevation in both resting and evoked presynaptic Ca(2+) signals. This increase is essential for the expression of the SV2B(-/-) secretory phenotype, characterized by changes in synaptic vesicle dynamics, synaptic plasticity, and synaptic strength. Short-term reproduction of the Ca(2+) phenotype in wild-type nerve terminals reproduces almost all aspects of the SV2B(-/-) secretory phenotype, while rescue of the Ca(2+) phenotype in SV2B(-/-) neurons relieves every facet of the SV2B(-/-) secretory phenotype. Thus, SV2 controls key aspects of synaptic functionality via its ability to regulate presynaptic Ca(2+), suggesting a potential new target for therapeutic intervention in the treatment of epilepsy.