Ghaleb Husseini | The American University Of Sharjah (original) (raw)
Uploads
Papers by Ghaleb Husseini
Journal of Biomedical Science and Engineering, 2013
The ability to decipher the genetic code of different species would lead to significant future sc... more The ability to decipher the genetic code of different species would lead to significant future scientific achievements in important areas, including medicine and agriculture. The importance of DNA sequencing necessitated a need for efficient automation of identification of base sequences from traces generated by existing sequencing machines, a process referred to as DNA base-calling. In this paper, a pattern recognition technique was adopted to minimize the inaccuracy in DNA base-calling. Two new frameworks using Artificial Neural Networks and Polynomial Classifiers are proposed to model electropherogram traces belonging to Homo sapiens, Saccharomyces mikatae and Drosophila melanogaster. De-correlation, de-convolution and normalization were implemented as part of the pre-processing stage employed to minimize data imperfections attributed to the nature of the chemical reactions involved in DNA sequencing. Discriminative features that characterize each chromatogram trace were subsequently extracted and subjected to the chosen classifiers to categorize the events to their respective base classes. The models are trained such that they are not restricted to a specific species or to a specific chemical procedure of sequencing. The basecalling accuracy achieved is compared with the existing standards, PHRED (Phil's Read Editor) and ABI (Applied Biosystems, version 2.1.1) KB base-callers in terms of deletion, insertion and substitution errors. Experimental evidence indicates that the proposed models achieve a higher base-calling accuracy when compared to PHRED and a comparable performance when compared to ABI. The results obtained demonstrate the potential of the proposed models for efficient and accurate DNA base-calling.
Technology in cancer research & treatment, Jan 26, 2014
eLiposomes encapsulate a perfluorocarbon nanoemulsion droplet inside a liposome. Ultrasound is th... more eLiposomes encapsulate a perfluorocarbon nanoemulsion droplet inside a liposome. Ultrasound is then used as a trigger mechanism to vaporize the perfluorocarbon, break the liposome, and release the desired drug to the tumor tissue. The purpose of this research is to show that eLiposomes synthesized using perfluoropentane are stable above the normal boiling point of the perfluoropentane and at body temperature and thus has potential for use in vivo. Experiments involving the release of fluorescent calcein molecules were performed on eLiposomes to measure the release of calcein at various temperatures in the absence of ultrasound. Results showed that eLiposomes are stable at body temperatures and that as the temperature increases above 40°C, calcein release from these novel nanocarriers increases.
Ultrasound in medicine & biology, 2009
Ultrasound (US) is used to enhance and target delivery of drugs and genes to cancer tissues. The ... more Ultrasound (US) is used to enhance and target delivery of drugs and genes to cancer tissues. The present study further examines the role of acoustic cavitation in US-induced permeabilization of cell membranes and subsequent drug or gene uptake by the cell. Rat colon cancer cells were exposed to ultrasound at various static pressures to examine the hypothesis that oscillating bubbles, also known as cavitating bubbles, permeabilize cells. Increasing pressure suppresses bubble cavitation activity; thus, if applied pressure were to reduce drug uptake, cell permeabilization would be strongly linked to bubble cavitation activity. Cells were exposed to 476 kHz pulsed ultrasound at average intensities of 2.75 W/cm(2) and 5.5 W/cm(2) at various pressures and times in an isothermal chamber. Cell fractions with reversible membrane damage (calcein uptake) and irreversible damage (propidium iodide uptake) were analyzed by flow cytometry. Pressurization to 3 atm nearly eliminated the biological e...
Technology in cancer research & treatment, 2005
This notes examines the mode of cell death of HL-60 cells exposed to 70 kHz and 1.3 W/cm(2) ultra... more This notes examines the mode of cell death of HL-60 cells exposed to 70 kHz and 1.3 W/cm(2) ultrasound in the presence of 1% Pluronic P105 and 1.67 microg/ml doxorubicin (Dox). The cells were ultrasonicated for 30, 60, and 120 minutes. They were then lysed, electrophorised, stained using propidium iodide, and their DNA profile captured using a fluorescent microscope. The gradual DNA damage observed and the comet tails captured after one and two hours of insonation suggest that the mode of cell killing is apoptosis.
BMC cancer, Jan 30, 2002
This paper examines the mechanism of ultrasonic enhanced drug delivery from Pluronic micelles. In... more This paper examines the mechanism of ultrasonic enhanced drug delivery from Pluronic micelles. In previous publications by our group, fluorescently labeled Pluronic was shown to penetrate HL-60 cells with and without the action of ultrasound, while drug uptake was increased with the application of ultrasound. In this study, the amount of uptake of two fluorescent probes, Lysosensor Green (a pH-sensitive probe) and Cell Tracker Orange CMTMR (a pH-independent probe), was measured in HL-60 and HeLa cells. The results of our experiments show that the increase in drug accumulation in the cells as a result of ultrasonication is not due to an increase in endocytosis due to ultrasonication. We hypothesize that sonoporation plays an important role in the acoustically activated drug delivery of chemotherapy drugs delivered from Pluronic micelles.
The kinetics of the release of Doxorubicin from Pluronic P105 micelles during ultrasonication and... more The kinetics of the release of Doxorubicin from Pluronic P105 micelles during ultrasonication and its subsequent re-encapsulation upon cessation of insonation were investigated. Four mechanisms are proposed to explain the acoustically-triggered Doxorubicin (Dox) release and re-encapsulation from Pluronic P105 micelles. The four mechanisms are: micelle destruction; destruction of cavitating nuclei; reassembly of micelles, and the reencapsulation of Dox. The first mechanism, the destruction of micelles during insonation, causes the release of Dox into solution. The micelles are destroyed because of cavitation events produced by collapsing nuclei, or bubbles in the insonated solution. The second mechanism, the slow destruction of cavitating nuclei, results in a slow partial recovery phase, when a small amount of Dox is re-encapsulated. The third and fourth mechanisms, the reassembly of micelles and the re-encapsulatin of Dox, are independent of ultrasound. These two mechanism are responsible for maintaining the drug release at a partial level, and for recovery after insonation ceases. A normal distribution was used to describe micellar size. Parameters for the model were determined based upon the best observed fit to experimental data. The resulting model provides a good approximation to experimental data for the release of Dox from Pluronic P105 micelles.
Current cancer drug targets, Jan 10, 2015
Chemotherapy is widely used for cancer treatment; however, it causes unwanted side effects in pat... more Chemotherapy is widely used for cancer treatment; however, it causes unwanted side effects in patients. To avoid these adverse effects, nanocarriers have been developed, which can be loaded with the chemotherapeutic agents, directed to the cancer site and, once there, be exposed to stimuli that will trigger the drug release. Liposomes can be chemically modified to increase their circulation time, their stability, and their sensitivity to specific stimulus. Additionally, ligands can be conjugated to their surface, allowing for their specific binding to receptors overexpressed on the surface of cancer cells and the subsequent internalization via endocytosis. Using a triggering mechanism, including temperature, ultrasound, enzymes or a change in pH, the release of the drug is controlled and induced inside the cells, hence avoiding drug release in systemic circulation, which in turn reduces the undesired side effects of conventional chemotherapy. Ultrasound has been widely studied as a ...
... Using Artificial Neural Networks to Model Acoustic Release of Doxorubicin from Unstabilized P... more ... Using Artificial Neural Networks to Model Acoustic Release of Doxorubicin from Unstabilized Pluronic P105. G. Husseini (UAE, USA), NM Abdel-Jabbar (UAE, Jordan), FS Mjalli (Malaysia), and WG Pitt (USA). Keywords. Neural ...
Journal of Biomedical Science and Engineering, 2013
The ability to decipher the genetic code of different species would lead to significant future sc... more The ability to decipher the genetic code of different species would lead to significant future scientific achievements in important areas, including medicine and agriculture. The importance of DNA sequencing necessitated a need for efficient automation of identification of base sequences from traces generated by existing sequencing machines, a process referred to as DNA base-calling. In this paper, a pattern recognition technique was adopted to minimize the inaccuracy in DNA base-calling. Two new frameworks using Artificial Neural Networks and Polynomial Classifiers are proposed to model electropherogram traces belonging to Homo sapiens, Saccharomyces mikatae and Drosophila melanogaster. De-correlation, de-convolution and normalization were implemented as part of the pre-processing stage employed to minimize data imperfections attributed to the nature of the chemical reactions involved in DNA sequencing. Discriminative features that characterize each chromatogram trace were subsequently extracted and subjected to the chosen classifiers to categorize the events to their respective base classes. The models are trained such that they are not restricted to a specific species or to a specific chemical procedure of sequencing. The basecalling accuracy achieved is compared with the existing standards, PHRED (Phil's Read Editor) and ABI (Applied Biosystems, version 2.1.1) KB base-callers in terms of deletion, insertion and substitution errors. Experimental evidence indicates that the proposed models achieve a higher base-calling accuracy when compared to PHRED and a comparable performance when compared to ABI. The results obtained demonstrate the potential of the proposed models for efficient and accurate DNA base-calling.
Technology in cancer research & treatment, Jan 26, 2014
eLiposomes encapsulate a perfluorocarbon nanoemulsion droplet inside a liposome. Ultrasound is th... more eLiposomes encapsulate a perfluorocarbon nanoemulsion droplet inside a liposome. Ultrasound is then used as a trigger mechanism to vaporize the perfluorocarbon, break the liposome, and release the desired drug to the tumor tissue. The purpose of this research is to show that eLiposomes synthesized using perfluoropentane are stable above the normal boiling point of the perfluoropentane and at body temperature and thus has potential for use in vivo. Experiments involving the release of fluorescent calcein molecules were performed on eLiposomes to measure the release of calcein at various temperatures in the absence of ultrasound. Results showed that eLiposomes are stable at body temperatures and that as the temperature increases above 40°C, calcein release from these novel nanocarriers increases.
Ultrasound in medicine & biology, 2009
Ultrasound (US) is used to enhance and target delivery of drugs and genes to cancer tissues. The ... more Ultrasound (US) is used to enhance and target delivery of drugs and genes to cancer tissues. The present study further examines the role of acoustic cavitation in US-induced permeabilization of cell membranes and subsequent drug or gene uptake by the cell. Rat colon cancer cells were exposed to ultrasound at various static pressures to examine the hypothesis that oscillating bubbles, also known as cavitating bubbles, permeabilize cells. Increasing pressure suppresses bubble cavitation activity; thus, if applied pressure were to reduce drug uptake, cell permeabilization would be strongly linked to bubble cavitation activity. Cells were exposed to 476 kHz pulsed ultrasound at average intensities of 2.75 W/cm(2) and 5.5 W/cm(2) at various pressures and times in an isothermal chamber. Cell fractions with reversible membrane damage (calcein uptake) and irreversible damage (propidium iodide uptake) were analyzed by flow cytometry. Pressurization to 3 atm nearly eliminated the biological e...
Technology in cancer research & treatment, 2005
This notes examines the mode of cell death of HL-60 cells exposed to 70 kHz and 1.3 W/cm(2) ultra... more This notes examines the mode of cell death of HL-60 cells exposed to 70 kHz and 1.3 W/cm(2) ultrasound in the presence of 1% Pluronic P105 and 1.67 microg/ml doxorubicin (Dox). The cells were ultrasonicated for 30, 60, and 120 minutes. They were then lysed, electrophorised, stained using propidium iodide, and their DNA profile captured using a fluorescent microscope. The gradual DNA damage observed and the comet tails captured after one and two hours of insonation suggest that the mode of cell killing is apoptosis.
BMC cancer, Jan 30, 2002
This paper examines the mechanism of ultrasonic enhanced drug delivery from Pluronic micelles. In... more This paper examines the mechanism of ultrasonic enhanced drug delivery from Pluronic micelles. In previous publications by our group, fluorescently labeled Pluronic was shown to penetrate HL-60 cells with and without the action of ultrasound, while drug uptake was increased with the application of ultrasound. In this study, the amount of uptake of two fluorescent probes, Lysosensor Green (a pH-sensitive probe) and Cell Tracker Orange CMTMR (a pH-independent probe), was measured in HL-60 and HeLa cells. The results of our experiments show that the increase in drug accumulation in the cells as a result of ultrasonication is not due to an increase in endocytosis due to ultrasonication. We hypothesize that sonoporation plays an important role in the acoustically activated drug delivery of chemotherapy drugs delivered from Pluronic micelles.
The kinetics of the release of Doxorubicin from Pluronic P105 micelles during ultrasonication and... more The kinetics of the release of Doxorubicin from Pluronic P105 micelles during ultrasonication and its subsequent re-encapsulation upon cessation of insonation were investigated. Four mechanisms are proposed to explain the acoustically-triggered Doxorubicin (Dox) release and re-encapsulation from Pluronic P105 micelles. The four mechanisms are: micelle destruction; destruction of cavitating nuclei; reassembly of micelles, and the reencapsulation of Dox. The first mechanism, the destruction of micelles during insonation, causes the release of Dox into solution. The micelles are destroyed because of cavitation events produced by collapsing nuclei, or bubbles in the insonated solution. The second mechanism, the slow destruction of cavitating nuclei, results in a slow partial recovery phase, when a small amount of Dox is re-encapsulated. The third and fourth mechanisms, the reassembly of micelles and the re-encapsulatin of Dox, are independent of ultrasound. These two mechanism are responsible for maintaining the drug release at a partial level, and for recovery after insonation ceases. A normal distribution was used to describe micellar size. Parameters for the model were determined based upon the best observed fit to experimental data. The resulting model provides a good approximation to experimental data for the release of Dox from Pluronic P105 micelles.
Current cancer drug targets, Jan 10, 2015
Chemotherapy is widely used for cancer treatment; however, it causes unwanted side effects in pat... more Chemotherapy is widely used for cancer treatment; however, it causes unwanted side effects in patients. To avoid these adverse effects, nanocarriers have been developed, which can be loaded with the chemotherapeutic agents, directed to the cancer site and, once there, be exposed to stimuli that will trigger the drug release. Liposomes can be chemically modified to increase their circulation time, their stability, and their sensitivity to specific stimulus. Additionally, ligands can be conjugated to their surface, allowing for their specific binding to receptors overexpressed on the surface of cancer cells and the subsequent internalization via endocytosis. Using a triggering mechanism, including temperature, ultrasound, enzymes or a change in pH, the release of the drug is controlled and induced inside the cells, hence avoiding drug release in systemic circulation, which in turn reduces the undesired side effects of conventional chemotherapy. Ultrasound has been widely studied as a ...
... Using Artificial Neural Networks to Model Acoustic Release of Doxorubicin from Unstabilized P... more ... Using Artificial Neural Networks to Model Acoustic Release of Doxorubicin from Unstabilized Pluronic P105. G. Husseini (UAE, USA), NM Abdel-Jabbar (UAE, Jordan), FS Mjalli (Malaysia), and WG Pitt (USA). Keywords. Neural ...