heather wang | Worcester Polytechnic Institute (original) (raw)
Papers by heather wang
Journal of chromatography A/Journal of chromatography, May 1, 2024
Organic process research & development, Feb 5, 2024
The growing use of adjuvants in the fast-paced formulation of new vaccines has created an unprece... more The growing use of adjuvants in the fast-paced formulation of new vaccines has created an unprecedented need for meaningful analytical assays that deliver reliable quantitative data from complex adjuvant and adjuvant-antigen mixtures. Due to their complex chemical and physical properties, method development for the separation of vaccine adjuvants is considered a highly challenging and laborious task. Reversed-phase liquid chromatography (RPLC) is among the most important tests in the (bio)pharmaceutical industry for release and stability indicating measurements including adjuvant content, identity, and purity profile. However, the time constraints of developing "on-demand" robust quantitative methods prior to each change in formulation can easily lead to sample analysis becoming a bottleneck in vaccine development. Herein a simple and efficient generic analytical framework capable of chromatographically resolving the most commonly used non-aluminum based adjuvants across academic and industrial sectors is introduced. This was designed to seek a more proactive approach for fast-paced assay development endeavors that evolved from extensive stationary phase screening in conjunction with multifactorial in silico simulations of adjuvant retention time (RT) as a function of gradient time, temperature, organic modifier blending, and buffer concentration. The multifactorial retention models yield 3D resolution maps with excellent baseline separation of all adjuvants in a single run, which was found to be very accurate, with differences between experimental and simulated retention times of less than 1%. The analytical framework described here also includes the introduction of a more versatile approach to method development by introducing a dynamic RT database for adjuvants covering the entire library of adjuvants with broad mechanisms of action across numerous vaccine formulations with excellent linearity, accuracy, precision, and specificity. The power of this framework was also demonstrated with numerous analytical assays that can be generated rapidly from simulations guiding vaccine processes in the development of new adjuvant formulations. Analytical assay in this work covers content, purity profile by RPLC-UV-CAD, and component identification (RPLC-MS) across complex vaccine formulations, including the use of surfactants (e.g., polysorbates), as well as their separation from adjuvant targets.
Analytical Chemistry, Nov 28, 2022
In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinit... more In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH 4) 2 SO 4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2
Journal of Pharmaceutical and Biomedical Analysis, Sep 1, 2023
Journal of Separation Science, 2016
Analytical and Bioanalytical Chemistry
Bioprocess development of increasingly challenging therapeutics and vaccines requires a commensur... more Bioprocess development of increasingly challenging therapeutics and vaccines requires a commensurate level of analytical innovation to deliver critical assays across functional areas. Chromatography hyphenated to numerous choices of detection has undeniably been the preferred analytical tool in the pharmaceutical industry for decades to analyze and isolate targets (e.g., APIs, intermediates, and byproducts) from multicomponent mixtures. Among many techniques, ion exchange chromatography (IEX) is widely used for the analysis and purification of biopharmaceuticals due to its unique selectivity that delivers distinctive chromatographic profiles compared to other separation modes (e.g., RPLC, HILIC, and SFC) without denaturing protein targets upon isolation process. However, IEX method development is still considered one of the most challenging and laborious approaches due to the many variables involved such as elution mechanism (via salt, pH, or salt-mediated-pH gradients), stationary phase’s properties (positively or negatively charged; strong or weak ion exchanger), buffer type and ionic strength as well as pH choices. Herein, we introduce a new framework consisting of a multicolumn IEX screening in conjunction with computer-assisted simulation for efficient method development and purification of biopharmaceuticals. The screening component integrates a total of 12 different columns and 24 mobile phases that are sequentially operated in a straightforward automated fashion for both cation and anion exchange modes (CEX and AEX, respectively). Optimal and robust operating conditions are achieved via computer-assisted simulation using readily available software (ACD Laboratories/LC Simulator), showcasing differences between experimental and simulated retention times of less than 0.5%. In addition, automated fraction collection is also incorporated into this framework, illustrating the practicality and ease of use in the context of separation, analysis, and purification of nucleotides, peptides, and proteins. Finally, we provide examples of the use of this IEX screening as a framework to identify efficient first dimension (1D) conditions that are combined with MS-friendly RPLC conditions in the second dimension (2D) for two-dimensional liquid chromatography experiments enabling purity analysis and identification of pharmaceutical targets.
Analytical Chemistry, 2021
The employment of ethylenediaminetetraacetic acid (EDTA) across several fields in chemistry and b... more The employment of ethylenediaminetetraacetic acid (EDTA) across several fields in chemistry and biology has required the creation of a high number of quantitative assays. Nonetheless, the determination of trace EDTA, especially in biologics and vaccines, remains challenging. Herein, we introduce an automated high-throughput approach based on EDTA esterification in 96-well plates using boron trifluoride-methanol combined with rapid analysis by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). Derivatization of EDTA to its methyl ester (Me-EDTA) serves to significantly improve chromatographic performance (retention, peak shape, and selectivity), while also delivering a tremendous enhancement of sensitivity in the positive ion mode electrospray ionization (ESI+). This procedure, in contrast to previous EDTA methods based on complexation with metal ions, is not affected by high concentration of other metals, buffers, and related salts abundantly present in biopharmaceutical processes (e.g., iron, copper, citrate, etc.). Validation of this assay for the determination of ng·mL-1 level EDTA in monoclonal antibody and vaccine products demonstrated excellent performance (repeatability, precision, and linear range) with high recovery from small sample volumes while also providing an advantageous automation-friendly workflow for high-throughput analysis.
Tetrahedron Letters, 2016
Organic Letters, 2021
The (4 + 3) cycloaddition of 2-trialkylsilyl-4-alkylbutadienes with an N-methyloxidopyridinium io... more The (4 + 3) cycloaddition of 2-trialkylsilyl-4-alkylbutadienes with an N-methyloxidopyridinium ion affords cycloadducts with high regioselectivity and excellent endo selectivity.
Analytica Chimica Acta, 2018
We used an infrared camera to observe longitudinal frictional heating on column. IR camera was ca... more We used an infrared camera to observe longitudinal frictional heating on column. IR camera was calibrated; no reflections; camera sensitivity was within 0.02 C. IR allowed us to see data-rich temperature profiles in real time with different solvents. Camera achieved temperature agreement with theory within 1% for non-compressible eluent. Data-rich temperature profiles allowed for insights related to column packing.
Journal of chromatography. A, Jan 17, 2017
Pressure is not typically controlled or adjusted independently of flow rate during method develop... more Pressure is not typically controlled or adjusted independently of flow rate during method development in reversed-phase LC (RPLC). However, it has been shown that pressure has an effect on analyte molecular molar volume, and the magnitude of this effect is greater for proteins and ionizable compounds than neutral small molecules. This phenomenon has received attention recently in the context of porous sub-2-micron particle packed columns. The present study surveys the effect of pressure and frictional heating on RPLC separations using commercially-available monolithic columns at constant flow rate and with controlled external temperature. Because the current monoliths cannot be operated at high pressures, all experiments were conducted with pressures at or below 200bar. Nonetheless, substantial changes in retention were still observed; for example, an increase in pressure of 75bar shifted the retention factor for bovine insulin from 1.27 to 1.78, a 40% increase, while a similar expe...
Analytical Chemistry, 2021
Continued adoption of two-dimensional liquid chromatography (2D-LC) in industrial laboratories wi... more Continued adoption of two-dimensional liquid chromatography (2D-LC) in industrial laboratories will depend on the development of approaches to make method development for 2D-LC more systematic, less tedious, and less reliant on user expertise. In this paper, we build on previous efforts in these directions by describing the use of multifactorial modeling software that can help streamline and simplify the method development process for 2D-LC. Specifically, we have focused on building retention models for second dimension (2D) separations involving variables including gradient time, temperature, organic modifier blending, and buffer concentration using LC simulator (ACD/Labs) software. Multifactorial retention modeling outcomes are illustrated as resolution map planes or cubes that enable straightforward location of 2D conditions that maximize resolution while minimizing analysis time. We also illustrate the practicality of this approach by identifying conditions that yield baseline separation of all compounds co-eluting from a first dimension (1D) separation using a single combination of 2D stationary phase and elution conditions. The multifactorial retention models were found to be very accurate for both the 1D and 2D separations, with differences between experimental and simulated retention times of less than 0.5%. Pharmaceutical applications of this approach for multiple heartcutting 2D-LC were demonstrated using IEC-IEC or achiral RPLC-chiral RPLC for 2D separations of multicomponent mixtures. The framework outlined here should help make 2D-LC method development more systematic and streamline development and optimization for a variety of 2D-LC applications in both industry and academia.
Organic Letters
A highly efficient enantioselective synthesis for the potent G-protein-coupled receptor 40 agonis... more A highly efficient enantioselective synthesis for the potent G-protein-coupled receptor 40 agonist MK-2305 was developed. The key tetrasubstituted olefin was prepared via a stereoselective Mukaiyama aldol reaction/elimination sequence. The highly enantioselective rhodium-catalyzed transfer hydrogenation of the tetrasubstituted olefin afforded the target compound MK-2305 in excellent optical and chemical purity. The key asymmetric transfer hydrogenation proceeds in excellent yields and enantioselectivities for a variety of substrates. The superior reactivity of the tethered catalysts was revealed by NMR studies.
Analytical Chemistry, 2022
Tandem column liquid chromatography (LC) is a convenient, cost-effective approach to resolve mult... more Tandem column liquid chromatography (LC) is a convenient, cost-effective approach to resolve multicomponent mixtures by serially coupling columns on readily available one-dimensional separation systems without specialized user training. Yet, adoption of this technique remains limited, mainly due to the difficulty in identifying optimal selectivity out of many possible tandem column combinations. At this point, method development and optimization require laborious "hit-or-miss" experimentation and "blind" screening when investigating different column selectivity without standard analytes. As a result, many chromatography practitioners end up combining two columns of similar selectivity, limiting the scope and potential of tandem column LC as a mainstay for industrial applications. To circumvent this challenge, we herein introduce a straightforward in silico multifactorial approach as a framework to expediently map the separation landscape across multiple tandem columns (achiral and chiral) and eluent combinations (isocratic and gradient elution) under reversed-phase LC conditions. Retention models were built using commercially available LC simulator software showcasing less than 2% difference between experimental and simulated retention times for analytes of interest in multicomponent pharmaceutical mixtures (e.g., metabolites and cyclic peptides).
Angewandte Chemie, 2022
At the forefront of chemistry and biology research, development timelines are fast-paced and larg... more At the forefront of chemistry and biology research, development timelines are fast-paced and large quantities of pure targets are rarely available. Herein, we introduce a new framework, which is built upon an automated, online trapping-enrichment multi-dimensional liquid chromatography platform (TE- Dt -mDLC) that enables: 1) highly efficient separation of complex mixtures in a first dimension ( 1 D -UV); 2) automated peak trapping-enrichment and buffer removal achieved through a sequence of H 2 O and D 2 O washes using an independent pump setup; and 3) a second dimension separation ( 2 D -UV-MS) with fully deuterated mobile phases and fraction collection to minimize protic residues for immediate NMR analysis while bypassing tedious drying processes and minimizing analyte degradation. Diverse examples of target isolation and characterization from organic synthesis and natural product chemistry laboratories are illustrated, demonstrating recoveries above 90% using as little as a few micrograms of material.
Analytical Chemistry, 2020
Recent developments in two-dimensional liquid chromatography (2D-LC) now make separation and anal... more Recent developments in two-dimensional liquid chromatography (2D-LC) now make separation and analysis of very complex mixtures achievable. Despite being such a powerful chromatographic tool, current 2D-LC technology requires a series of arduous method development activities poorly suited for a fastpaced industrial environment. Recent introductions of new technologies including active solvent modulation and a support for multicolumn 2D-LC are helping to overcome this stigma. However, many chromatography practitioners believe that the lack of a systematic way to effectively optimize 2D-LC separations is a missing link in securing the viability of 2D-LC as a mainstay for industrial applications. In this work, a computer-assisted modeling approach that dramatically simplifies both offline and online 2D-LC method developments is introduced. Our methodology is based on mapping the separation landscape of pharmaceutically relevant mixtures across both first (1 D) and second (2 D) dimensions using LC Simulator (ACD/Labs) software. Retention models for 1 D and 2 D conditions were built using a minimal number of multifactorial modeling experiments (2 × 2 or 3 × 3 parameters: gradient slope, column temperature, and different column and mobile phase combinations). The approach was first applied to online 2D-LC analysis involving achiral and chiral separations of complex mixtures of enantiomeric species. In these experiments, the retention models proved to be quite accurate for both the 1 D and 2 D separations, with retention time differences between experiments and simulations of less than 3.5%. This software-based concept was also demonstrated for offline 2D-LC purification of drug substances.
Journal of chromatography A/Journal of chromatography, May 1, 2024
Organic process research & development, Feb 5, 2024
The growing use of adjuvants in the fast-paced formulation of new vaccines has created an unprece... more The growing use of adjuvants in the fast-paced formulation of new vaccines has created an unprecedented need for meaningful analytical assays that deliver reliable quantitative data from complex adjuvant and adjuvant-antigen mixtures. Due to their complex chemical and physical properties, method development for the separation of vaccine adjuvants is considered a highly challenging and laborious task. Reversed-phase liquid chromatography (RPLC) is among the most important tests in the (bio)pharmaceutical industry for release and stability indicating measurements including adjuvant content, identity, and purity profile. However, the time constraints of developing "on-demand" robust quantitative methods prior to each change in formulation can easily lead to sample analysis becoming a bottleneck in vaccine development. Herein a simple and efficient generic analytical framework capable of chromatographically resolving the most commonly used non-aluminum based adjuvants across academic and industrial sectors is introduced. This was designed to seek a more proactive approach for fast-paced assay development endeavors that evolved from extensive stationary phase screening in conjunction with multifactorial in silico simulations of adjuvant retention time (RT) as a function of gradient time, temperature, organic modifier blending, and buffer concentration. The multifactorial retention models yield 3D resolution maps with excellent baseline separation of all adjuvants in a single run, which was found to be very accurate, with differences between experimental and simulated retention times of less than 1%. The analytical framework described here also includes the introduction of a more versatile approach to method development by introducing a dynamic RT database for adjuvants covering the entire library of adjuvants with broad mechanisms of action across numerous vaccine formulations with excellent linearity, accuracy, precision, and specificity. The power of this framework was also demonstrated with numerous analytical assays that can be generated rapidly from simulations guiding vaccine processes in the development of new adjuvant formulations. Analytical assay in this work covers content, purity profile by RPLC-UV-CAD, and component identification (RPLC-MS) across complex vaccine formulations, including the use of surfactants (e.g., polysorbates), as well as their separation from adjuvant targets.
Analytical Chemistry, Nov 28, 2022
In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinit... more In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH 4) 2 SO 4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2
Journal of Pharmaceutical and Biomedical Analysis, Sep 1, 2023
Journal of Separation Science, 2016
Analytical and Bioanalytical Chemistry
Bioprocess development of increasingly challenging therapeutics and vaccines requires a commensur... more Bioprocess development of increasingly challenging therapeutics and vaccines requires a commensurate level of analytical innovation to deliver critical assays across functional areas. Chromatography hyphenated to numerous choices of detection has undeniably been the preferred analytical tool in the pharmaceutical industry for decades to analyze and isolate targets (e.g., APIs, intermediates, and byproducts) from multicomponent mixtures. Among many techniques, ion exchange chromatography (IEX) is widely used for the analysis and purification of biopharmaceuticals due to its unique selectivity that delivers distinctive chromatographic profiles compared to other separation modes (e.g., RPLC, HILIC, and SFC) without denaturing protein targets upon isolation process. However, IEX method development is still considered one of the most challenging and laborious approaches due to the many variables involved such as elution mechanism (via salt, pH, or salt-mediated-pH gradients), stationary phase’s properties (positively or negatively charged; strong or weak ion exchanger), buffer type and ionic strength as well as pH choices. Herein, we introduce a new framework consisting of a multicolumn IEX screening in conjunction with computer-assisted simulation for efficient method development and purification of biopharmaceuticals. The screening component integrates a total of 12 different columns and 24 mobile phases that are sequentially operated in a straightforward automated fashion for both cation and anion exchange modes (CEX and AEX, respectively). Optimal and robust operating conditions are achieved via computer-assisted simulation using readily available software (ACD Laboratories/LC Simulator), showcasing differences between experimental and simulated retention times of less than 0.5%. In addition, automated fraction collection is also incorporated into this framework, illustrating the practicality and ease of use in the context of separation, analysis, and purification of nucleotides, peptides, and proteins. Finally, we provide examples of the use of this IEX screening as a framework to identify efficient first dimension (1D) conditions that are combined with MS-friendly RPLC conditions in the second dimension (2D) for two-dimensional liquid chromatography experiments enabling purity analysis and identification of pharmaceutical targets.
Analytical Chemistry, 2021
The employment of ethylenediaminetetraacetic acid (EDTA) across several fields in chemistry and b... more The employment of ethylenediaminetetraacetic acid (EDTA) across several fields in chemistry and biology has required the creation of a high number of quantitative assays. Nonetheless, the determination of trace EDTA, especially in biologics and vaccines, remains challenging. Herein, we introduce an automated high-throughput approach based on EDTA esterification in 96-well plates using boron trifluoride-methanol combined with rapid analysis by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). Derivatization of EDTA to its methyl ester (Me-EDTA) serves to significantly improve chromatographic performance (retention, peak shape, and selectivity), while also delivering a tremendous enhancement of sensitivity in the positive ion mode electrospray ionization (ESI+). This procedure, in contrast to previous EDTA methods based on complexation with metal ions, is not affected by high concentration of other metals, buffers, and related salts abundantly present in biopharmaceutical processes (e.g., iron, copper, citrate, etc.). Validation of this assay for the determination of ng·mL-1 level EDTA in monoclonal antibody and vaccine products demonstrated excellent performance (repeatability, precision, and linear range) with high recovery from small sample volumes while also providing an advantageous automation-friendly workflow for high-throughput analysis.
Tetrahedron Letters, 2016
Organic Letters, 2021
The (4 + 3) cycloaddition of 2-trialkylsilyl-4-alkylbutadienes with an N-methyloxidopyridinium io... more The (4 + 3) cycloaddition of 2-trialkylsilyl-4-alkylbutadienes with an N-methyloxidopyridinium ion affords cycloadducts with high regioselectivity and excellent endo selectivity.
Analytica Chimica Acta, 2018
We used an infrared camera to observe longitudinal frictional heating on column. IR camera was ca... more We used an infrared camera to observe longitudinal frictional heating on column. IR camera was calibrated; no reflections; camera sensitivity was within 0.02 C. IR allowed us to see data-rich temperature profiles in real time with different solvents. Camera achieved temperature agreement with theory within 1% for non-compressible eluent. Data-rich temperature profiles allowed for insights related to column packing.
Journal of chromatography. A, Jan 17, 2017
Pressure is not typically controlled or adjusted independently of flow rate during method develop... more Pressure is not typically controlled or adjusted independently of flow rate during method development in reversed-phase LC (RPLC). However, it has been shown that pressure has an effect on analyte molecular molar volume, and the magnitude of this effect is greater for proteins and ionizable compounds than neutral small molecules. This phenomenon has received attention recently in the context of porous sub-2-micron particle packed columns. The present study surveys the effect of pressure and frictional heating on RPLC separations using commercially-available monolithic columns at constant flow rate and with controlled external temperature. Because the current monoliths cannot be operated at high pressures, all experiments were conducted with pressures at or below 200bar. Nonetheless, substantial changes in retention were still observed; for example, an increase in pressure of 75bar shifted the retention factor for bovine insulin from 1.27 to 1.78, a 40% increase, while a similar expe...
Analytical Chemistry, 2021
Continued adoption of two-dimensional liquid chromatography (2D-LC) in industrial laboratories wi... more Continued adoption of two-dimensional liquid chromatography (2D-LC) in industrial laboratories will depend on the development of approaches to make method development for 2D-LC more systematic, less tedious, and less reliant on user expertise. In this paper, we build on previous efforts in these directions by describing the use of multifactorial modeling software that can help streamline and simplify the method development process for 2D-LC. Specifically, we have focused on building retention models for second dimension (2D) separations involving variables including gradient time, temperature, organic modifier blending, and buffer concentration using LC simulator (ACD/Labs) software. Multifactorial retention modeling outcomes are illustrated as resolution map planes or cubes that enable straightforward location of 2D conditions that maximize resolution while minimizing analysis time. We also illustrate the practicality of this approach by identifying conditions that yield baseline separation of all compounds co-eluting from a first dimension (1D) separation using a single combination of 2D stationary phase and elution conditions. The multifactorial retention models were found to be very accurate for both the 1D and 2D separations, with differences between experimental and simulated retention times of less than 0.5%. Pharmaceutical applications of this approach for multiple heartcutting 2D-LC were demonstrated using IEC-IEC or achiral RPLC-chiral RPLC for 2D separations of multicomponent mixtures. The framework outlined here should help make 2D-LC method development more systematic and streamline development and optimization for a variety of 2D-LC applications in both industry and academia.
Organic Letters
A highly efficient enantioselective synthesis for the potent G-protein-coupled receptor 40 agonis... more A highly efficient enantioselective synthesis for the potent G-protein-coupled receptor 40 agonist MK-2305 was developed. The key tetrasubstituted olefin was prepared via a stereoselective Mukaiyama aldol reaction/elimination sequence. The highly enantioselective rhodium-catalyzed transfer hydrogenation of the tetrasubstituted olefin afforded the target compound MK-2305 in excellent optical and chemical purity. The key asymmetric transfer hydrogenation proceeds in excellent yields and enantioselectivities for a variety of substrates. The superior reactivity of the tethered catalysts was revealed by NMR studies.
Analytical Chemistry, 2022
Tandem column liquid chromatography (LC) is a convenient, cost-effective approach to resolve mult... more Tandem column liquid chromatography (LC) is a convenient, cost-effective approach to resolve multicomponent mixtures by serially coupling columns on readily available one-dimensional separation systems without specialized user training. Yet, adoption of this technique remains limited, mainly due to the difficulty in identifying optimal selectivity out of many possible tandem column combinations. At this point, method development and optimization require laborious "hit-or-miss" experimentation and "blind" screening when investigating different column selectivity without standard analytes. As a result, many chromatography practitioners end up combining two columns of similar selectivity, limiting the scope and potential of tandem column LC as a mainstay for industrial applications. To circumvent this challenge, we herein introduce a straightforward in silico multifactorial approach as a framework to expediently map the separation landscape across multiple tandem columns (achiral and chiral) and eluent combinations (isocratic and gradient elution) under reversed-phase LC conditions. Retention models were built using commercially available LC simulator software showcasing less than 2% difference between experimental and simulated retention times for analytes of interest in multicomponent pharmaceutical mixtures (e.g., metabolites and cyclic peptides).
Angewandte Chemie, 2022
At the forefront of chemistry and biology research, development timelines are fast-paced and larg... more At the forefront of chemistry and biology research, development timelines are fast-paced and large quantities of pure targets are rarely available. Herein, we introduce a new framework, which is built upon an automated, online trapping-enrichment multi-dimensional liquid chromatography platform (TE- Dt -mDLC) that enables: 1) highly efficient separation of complex mixtures in a first dimension ( 1 D -UV); 2) automated peak trapping-enrichment and buffer removal achieved through a sequence of H 2 O and D 2 O washes using an independent pump setup; and 3) a second dimension separation ( 2 D -UV-MS) with fully deuterated mobile phases and fraction collection to minimize protic residues for immediate NMR analysis while bypassing tedious drying processes and minimizing analyte degradation. Diverse examples of target isolation and characterization from organic synthesis and natural product chemistry laboratories are illustrated, demonstrating recoveries above 90% using as little as a few micrograms of material.
Analytical Chemistry, 2020
Recent developments in two-dimensional liquid chromatography (2D-LC) now make separation and anal... more Recent developments in two-dimensional liquid chromatography (2D-LC) now make separation and analysis of very complex mixtures achievable. Despite being such a powerful chromatographic tool, current 2D-LC technology requires a series of arduous method development activities poorly suited for a fastpaced industrial environment. Recent introductions of new technologies including active solvent modulation and a support for multicolumn 2D-LC are helping to overcome this stigma. However, many chromatography practitioners believe that the lack of a systematic way to effectively optimize 2D-LC separations is a missing link in securing the viability of 2D-LC as a mainstay for industrial applications. In this work, a computer-assisted modeling approach that dramatically simplifies both offline and online 2D-LC method developments is introduced. Our methodology is based on mapping the separation landscape of pharmaceutically relevant mixtures across both first (1 D) and second (2 D) dimensions using LC Simulator (ACD/Labs) software. Retention models for 1 D and 2 D conditions were built using a minimal number of multifactorial modeling experiments (2 × 2 or 3 × 3 parameters: gradient slope, column temperature, and different column and mobile phase combinations). The approach was first applied to online 2D-LC analysis involving achiral and chiral separations of complex mixtures of enantiomeric species. In these experiments, the retention models proved to be quite accurate for both the 1 D and 2 D separations, with retention time differences between experiments and simulations of less than 3.5%. This software-based concept was also demonstrated for offline 2D-LC purification of drug substances.