Eitan Salomon | Washington University in St. Louis (original) (raw)
Papers by Eitan Salomon
Bioenergetic Processes of Cyanobacteria, 2011
Environmental microbiology, Jan 2, 2015
The functions of micronutrient transition metals in photosynthetic organisms are interconnected. ... more The functions of micronutrient transition metals in photosynthetic organisms are interconnected. So are the effects of their limitation. Here we present evidence for the effects of Mn limitation on Fe limitation responses in the cyanobacterium Synechocystis sp. PCC 6803. Low Mn acclimated cells were able to detect and respond to iron insufficiency by inducing specific Fe transporters. However, they did not bleach, lose additional photosystem I activity and did not induce isiA transcription. Induction of the isiAB operon is a hallmark of iron limitation, and the isiA protein is considered to be central to the acclimation of the photosynthetic apparatus. Our results suggest that acclimation to environmentally relevant Mn concentrations that much lower than those used in laboratory experiments reduces the detrimental effects of iron limitation and modifies iron stress responses.
PATAI'S Chemistry of Functional Groups, 2009
ABSTRACT
Plant Science, 2013
The goal of the current research was to study the role of anthocyanin accumulation, O 2 -related ... more The goal of the current research was to study the role of anthocyanin accumulation, O 2 -related photochemical processes and non-photochemical quenching (NPQ) in the response of desert and Mediterranean plants to drought and excessive light.
PLANT PHYSIOLOGY, 2011
Manganese (Mn) ions are essential for oxygen evolution activity in photoautotrophs. In this paper... more Manganese (Mn) ions are essential for oxygen evolution activity in photoautotrophs. In this paper, we demonstrate the dynamic response of the photosynthetic apparatus to changes in Mn bioavailability in cyanobacteria. Cultures of the cyanobacterium Synechocystis PCC 6803 could grow on Mn concentrations as low as 100 nM without any observable effect on their physiology. Below this threshold, a decline in the photochemical activity of photosystem II (PSII) occurred, as evident by lower oxygen evolution rates, lower maximal photosynthetic yield of PSII values, and faster Q A reoxidation rates. In 77 K chlorophyll fluorescence spectroscopy, a peak at 682 nm was observed. After ruling out the contribution of phycobilisome and iron stress-induced IsiA proteins, this band was attributed to the accumulation of partially assembled PSII. Surprisingly, the increase in the 682-nm peak was paralleled by a decrease in the 720-nm peak, dominated by PSI fluorescence. The effect on PSI was confirmed by measurements of the P 700 photochemical activity. The loss of activity was the result of two processes: loss of PSI core proteins and changes in the organization of PSI complexes. Blue native-polyacrylamide gel electrophoresis analysis revealed a Mn limitation-dependent dissociation of PSI trimers into monomers. The sensitive range for changes in the organization of the photosynthetic apparatus overlaps with the range of Mn concentrations measured in natural environments. We suggest that the ability to manipulate PSI content and organization allows cyanobacteria to balance electron transport rates between the photosystems. At naturally occurring Mn concentrations, such a mechanism will provide important protection against light-induced damage.
Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2013
Other uses, including reproduction and distribution, or selling or licensing copies, or posting t... more Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.
Biochimica et biophysica acta, 2014
Iron and manganese are part of a small group of transition metals required for photosynthetic ele... more Iron and manganese are part of a small group of transition metals required for photosynthetic electron transport. Here, we present evidence for a functional link between iron and manganese homeostasis. In the unicellular cyanobacterium, Synechocystis sp. PCC 6803, Fe and Mn deprivation resulted in distinct modifications of the physiological status. The effect on growth and photosynthetic activity under Fe limitation were more severe than those observed under Mn limitation. Moreover, the intracellular elemental quotas of Fe and Mn were found to be linked. Fe limitation reduced the intracellular Mn quota. Mn limitation did not exert a reciprocal effect on Fe quotas. Microarray analysis comparing Mn and Fe limitation revealed a stark difference in the extent of the transcriptional response to the two limiting conditions, reflective of the physiological responses. The effects of Fe limitation on the transcriptional network are widespread while the effects on Mn limitation are highly spe...
Bioenergetic Processes of Cyanobacteria, 2011
Environmental microbiology, Jan 2, 2015
The functions of micronutrient transition metals in photosynthetic organisms are interconnected. ... more The functions of micronutrient transition metals in photosynthetic organisms are interconnected. So are the effects of their limitation. Here we present evidence for the effects of Mn limitation on Fe limitation responses in the cyanobacterium Synechocystis sp. PCC 6803. Low Mn acclimated cells were able to detect and respond to iron insufficiency by inducing specific Fe transporters. However, they did not bleach, lose additional photosystem I activity and did not induce isiA transcription. Induction of the isiAB operon is a hallmark of iron limitation, and the isiA protein is considered to be central to the acclimation of the photosynthetic apparatus. Our results suggest that acclimation to environmentally relevant Mn concentrations that much lower than those used in laboratory experiments reduces the detrimental effects of iron limitation and modifies iron stress responses.
PATAI'S Chemistry of Functional Groups, 2009
ABSTRACT
Plant Science, 2013
The goal of the current research was to study the role of anthocyanin accumulation, O 2 -related ... more The goal of the current research was to study the role of anthocyanin accumulation, O 2 -related photochemical processes and non-photochemical quenching (NPQ) in the response of desert and Mediterranean plants to drought and excessive light.
PLANT PHYSIOLOGY, 2011
Manganese (Mn) ions are essential for oxygen evolution activity in photoautotrophs. In this paper... more Manganese (Mn) ions are essential for oxygen evolution activity in photoautotrophs. In this paper, we demonstrate the dynamic response of the photosynthetic apparatus to changes in Mn bioavailability in cyanobacteria. Cultures of the cyanobacterium Synechocystis PCC 6803 could grow on Mn concentrations as low as 100 nM without any observable effect on their physiology. Below this threshold, a decline in the photochemical activity of photosystem II (PSII) occurred, as evident by lower oxygen evolution rates, lower maximal photosynthetic yield of PSII values, and faster Q A reoxidation rates. In 77 K chlorophyll fluorescence spectroscopy, a peak at 682 nm was observed. After ruling out the contribution of phycobilisome and iron stress-induced IsiA proteins, this band was attributed to the accumulation of partially assembled PSII. Surprisingly, the increase in the 682-nm peak was paralleled by a decrease in the 720-nm peak, dominated by PSI fluorescence. The effect on PSI was confirmed by measurements of the P 700 photochemical activity. The loss of activity was the result of two processes: loss of PSI core proteins and changes in the organization of PSI complexes. Blue native-polyacrylamide gel electrophoresis analysis revealed a Mn limitation-dependent dissociation of PSI trimers into monomers. The sensitive range for changes in the organization of the photosynthetic apparatus overlaps with the range of Mn concentrations measured in natural environments. We suggest that the ability to manipulate PSI content and organization allows cyanobacteria to balance electron transport rates between the photosystems. At naturally occurring Mn concentrations, such a mechanism will provide important protection against light-induced damage.
Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2013
Other uses, including reproduction and distribution, or selling or licensing copies, or posting t... more Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.
Biochimica et biophysica acta, 2014
Iron and manganese are part of a small group of transition metals required for photosynthetic ele... more Iron and manganese are part of a small group of transition metals required for photosynthetic electron transport. Here, we present evidence for a functional link between iron and manganese homeostasis. In the unicellular cyanobacterium, Synechocystis sp. PCC 6803, Fe and Mn deprivation resulted in distinct modifications of the physiological status. The effect on growth and photosynthetic activity under Fe limitation were more severe than those observed under Mn limitation. Moreover, the intracellular elemental quotas of Fe and Mn were found to be linked. Fe limitation reduced the intracellular Mn quota. Mn limitation did not exert a reciprocal effect on Fe quotas. Microarray analysis comparing Mn and Fe limitation revealed a stark difference in the extent of the transcriptional response to the two limiting conditions, reflective of the physiological responses. The effects of Fe limitation on the transcriptional network are widespread while the effects on Mn limitation are highly spe...