Camille Butruille | CAU Kiel (original) (raw)
Uploads
Papers by Camille Butruille
Christian-Albrechts-Universität zu Kiel, 2015
The Holocene, 2016
Reconstruction of Skagerrak deep-water renewal is used to assess regional changes in winter therm... more Reconstruction of Skagerrak deep-water renewal is used to assess regional changes in winter thermal conditions over the past 6800 years. Changes in winter climate conditions from the Skagerrak region are in turn linked to shifts in Holocene large-scale atmospheric circulation patterns prevailing over northern Europe. We use Melonis barleeanus Mg/Ca from two sediment cores in the central Skagerrak to reconstruct temperature of Skagerrak intermediate water, representing the warm season temperature variability, and deep water, for monitoring Skagerrak deep-water renewal, reflecting the winter temperature variability. In addition, M. barleeanus δ18O is used from the deeper core to reconstruct salinity, also monitoring the deep-water renewal. Our results show that the Skagerrak deep-water experienced phases of particularly enhanced renewal during the mid-Holocene reflecting severe winter conditions, followed by a general shift to reduced renewal as a consequence of milder winter conditio...
Quaternary International, 2012
Christian-Albrechts-Universität zu Kiel, 2015
The Holocene, 2016
Reconstruction of Skagerrak deep-water renewal is used to assess regional changes in winter therm... more Reconstruction of Skagerrak deep-water renewal is used to assess regional changes in winter thermal conditions over the past 6800 years. Changes in winter climate conditions from the Skagerrak region are in turn linked to shifts in Holocene large-scale atmospheric circulation patterns prevailing over northern Europe. We use Melonis barleeanus Mg/Ca from two sediment cores in the central Skagerrak to reconstruct temperature of Skagerrak intermediate water, representing the warm season temperature variability, and deep water, for monitoring Skagerrak deep-water renewal, reflecting the winter temperature variability. In addition, M. barleeanus δ18O is used from the deeper core to reconstruct salinity, also monitoring the deep-water renewal. Our results show that the Skagerrak deep-water experienced phases of particularly enhanced renewal during the mid-Holocene reflecting severe winter conditions, followed by a general shift to reduced renewal as a consequence of milder winter conditio...
Quaternary International, 2012