Unrolling of Deep Graph Total Variation for Image Denoising (original) (raw)
Related papers
Untrained Graph Neural Networks for Denoising
IEEE Transactions on Signal Processing
A fundamental problem in signal processing is to denoise a signal. While there are many well-performing methods for denoising signals defined on regular supports, such as images defined on two-dimensional grids of pixels, many important classes of signals are defined over irregular domains such as graphs. This paper introduces two untrained graph neural network architectures for graph signal denoising, provides theoretical guarantees for their denoising capabilities in a simple setup, and numerically validates the theoretical results in more general scenarios. The two architectures differ on how they incorporate the information encoded in the graph, with one relying on graph convolutions and the other employing graph upsampling operators based on hierarchical clustering. Each architecture implements a different prior over the targeted signals. To numerically illustrate the validity of the theoretical results and to compare the performance of the proposed architectures with other denoising alternatives, we present several experimental results with real and synthetic datasets.
Graph Neural Net Using Analytical Graph Filters and Topology Optimization for Image Denoising
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020
While convolutional neural nets (CNNs) have achieved remarkable performance for a wide range of inverse imaging applications, the filter coefficients are computed in a purely data-driven manner and are not explainable. Inspired by an analytically derived CNN by Hadji et al., in this paper we construct a new layered graph neural net (GNN) using GraphBio as our graph filter. Unlike convolutional filters in previous GNNs, our employed GraphBio is analytically defined and requires no training, and we optimize the end-to-end system only via learning of appropriate graph topology at each layer. In signal filtering terms, it means that our linear graph filter at each layer is always intrepretable as low-pass with known biorthogonal conditions, while the graph spectrum itself is optimized via data training. As an example application, we show that our analytical GNN achieves image denoising performance comparable to a state-of-the-art CNN-based scheme when the training and testing data share the same statistics, and when they differ, our analytical GNN outperforms it by more than 1dB in PSNR.
Signal denoising on graphs via graph filtering
Signal recovery from noisy measurements is an important task that arises in many areas of signal processing. In this paper, we consider this problem for signals represented with graphs using a recently developed framework of discrete signal processing on graphs. We formulate graph signal denoising as an optimization problem and derive an exact closed-form solution expressed by an inverse graph filter, as well as an approximate iterative solution expressed by a standard graph filter. We evaluate the obtained algorithms by applying them to measurement denoising for temperature sensors and opinion combination for multiple experts.
A Robust Alternative for Graph Convolutional Neural Networks via Graph Neighborhood Filters
2021 55th Asilomar Conference on Signals, Systems, and Computers, 2021
Graph convolutional neural networks (GCNNs) are popular deep learning architectures that, upon replacing regular convolutions with graph filters (GFs), generalize CNNs to irregular domains. However, classical GFs are prone to numerical errors since they consist of high-order polynomials. This problem is aggravated when several filters are applied in cascade, limiting the practical depth of GCNNs. To tackle this issue, we present the neighborhood graph filters (NGFs), a family of GFs that replaces the powers of the graph shift operator with k-hop neighborhood adjacency matrices. NGFs help to alleviate the numerical issues of traditional GFs, allow for the design of deeper GCNNs, and enhance the robustness to errors in the topology of the graph. To illustrate the advantage over traditional GFs in practical applications, we use NGFs in the design of deep neighborhood GCNNs to solve graph signal denoising and node classification problems over both synthetic and real-world data.
Graph Signal Denoising via Trilateral Filter on Graph Spectral Domain
IEEE Transactions on Signal and Information Processing over Networks, 2016
This paper presents a graph signal denoising method with the trilateral filter defined in the graph spectral domain. The original trilateral filter (TF) is a data-dependent filter that is widely used as an edge-preserving smoothing method for image processing. However, because of the data-dependency, one cannot provide its frequency domain representation. To overcome this problem, we establish the graph spectral domain representation of the data-dependent filter, i.e., a spectral graph TF (SGTF). This representation enables us to design an effective graph signal denoising filter with a Tikhonov regularization. Moreover, for the proposed graph denoising filter, we provide a parameter optimization technique to search for a regularization parameter that approximately minimizes the mean squared error w.r.t. the unknown graph signal of interest. Comprehensive experimental results validate our graph signal processing-based approach for images and graph signals.
Image Denoising Using Graph Laplacian Regularization: A Review
Image denoising is an important image processing task, both as a process itself, and as a component in other processes. Very many ways to denoise an image or a set of data exists. The main properties of a good image denoising model are that it will remove noise while preserving edges. Removing impulse noise from images is a critical issue in image processing because it may occur frequently during acquisition or transmission of images. So it is necessary to find the techniques for the mechanisms and implications of imposing the graph Laplacian regularizer on the original inverse problem.
Chebyshev and conjugate gradient filters for graph image denoising
2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), 2014
In 3D image/video acquisition, different views are often captured with varying noise levels across the views. In this paper, we propose a graph-based image enhancement technique that uses a higher quality view to enhance a degraded view. A depth map is utilized as auxiliary information to match the perspectives of the two views. Our method performs graph-based filtering of the noisy image by directly computing a projection of the image to be filtered onto a lower dimensional Krylov subspace of the graph Laplacian. We discuss two graph spectral denoising methods: first using Chebyshev polynomials, and second using iterations of the conjugate gradient algorithm. Our framework generalizes previously known polynomial graph filters, and we demonstrate through numerical simulations that our proposed technique produces subjectively cleaner images with about 1-3 dB improvement in PSNR over existing polynomial graph filters.
Generalizing Graph Convolutional Neural Networks with Edge-Variant Recursions on Graphs
2019 27th European Signal Processing Conference (EUSIPCO), 2019
This paper reviews graph convolutional neural networks (GCNNs) through the lens of edge-variant graph filters. The edge-variant graph filter is a finite order, linear, and local recursion that allows each node, in each iteration, to weigh differently the information of its neighbors. By exploiting this recursion, we formulate a general framework for GCNNs which considers state-of-the-art solutions as particular cases. This framework results useful to i) understand the tradeoff between local detail and the number of parameters of each solution and ii) provide guidelines for developing a myriad of novel approaches that can be implemented locally in the vertex domain. One of such approaches is presented here showing superior performance w.r.t. current alternatives in graph signal classification problems.
Node-Variant Graph Filters in Graph Neural Networks
2022 IEEE Data Science and Learning Workshop (DSLW)
Graph neural networks (GNNs) have been successfully employed in a myriad of applications involving graph-structured data. Theoretical findings establish that GNNs use nonlinear activation functions to create low-eigenvalue frequency content that can be processed in a stable manner by subsequent graph convolutional filters. However, the exact shape of the frequency content created by nonlinear functions is not known, and thus, it cannot be learned nor controlled. In this work, node-variant graph filters (NVGFs) are shown to be capable of creating frequency content and are thus used in lieu of nonlinear activation functions. This results in a novel GNN architecture that, although linear, is capable of creating frequency content as well. Furthermore, this new frequency content can be either designed or learned from data. In this way, the role of frequency creation is separated from the nonlinear nature of traditional GNNs. Extensive simulations are carried out to differentiate the contributions of frequency creation from those of the nonlinearity. Preprint. Under review.
Convolutional Neural Networks via Node-Varying Graph Filters
2018 IEEE Data Science Workshop (DSW), 2018
Convolutional neural networks (CNNs) are being applied to an increasing number of problems and fields due to their superior performance in classification and regression tasks. Since two of the key operations that CNNs implement are convolution and pooling, this type of networks is implicitly designed to act on data described by regular structures such as images. Motivated by the recent interest in processing signals defined in irregular domains, we advocate a CNN architecture that operates on signals supported on graphs. The proposed design replaces the classical convolution not with a nodeinvariant graph filter (GF), which is the natural generalization of convolution to graph domains, but with a node-varying GF. This filter extracts different local features without increasing the output dimension of each layer and, as a result, bypasses the need for a pooling stage while involving only local operations. A second contribution is to replace the node-varying GF with a hybrid node-varying GF, which is a new type of GF introduced in this paper. While the alternative architecture can still be run locally without requiring a pooling stage, the number of trainable parameters is smaller and can be rendered independent of the data dimension. Tests are run on a synthetic source localization problem and on the 20NEWS dataset.