Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors (original) (raw)

The repressor and co-activator HsfB1 regulates the major heat stress transcription factors in tomato

Plants code for a multitude of heat stress transcription factors (Hsfs). Three of them act as central regulators of heat stress (HS) response in tomato (Solanum lycopersicum). HsfA1a regulates the initial response, and HsfA2 controls acquired thermotolerance. HsfB1 is a transcriptional repressor but can also act as co-activator of HsfA1a. Currently, the mode of action and the relevance of the dual function of HsfB1 remain elusive. We examined this in HsfB1 overexpression or suppression transgenic tomato lines. Proteome analysis revealed that HsfB1 overexpression stimulates the co-activator function of HsfB1 and consequently the accumulation of HS-related proteins under non-stress conditions. Plants with enhanced levels of HsfB1 show aberrant growth and development but enhanced thermotolerance. HsfB1 suppression has no significant effect prior to stress. Upon HS, HsfB1 suppression strongly enhances the induction of heat shock proteins due to the higher activity of other HS-induced Hsfs, resulting in increased thermotolerance compared with wild-type. Thereby, HsfB1 acts as co-activator of HsfA1a for several Hsps, but as a transcriptional repressor on other Hsfs, including HsfA1b and HsfA2. The dual function explains the activation of chaperones to enhance protection and regulate the balance between growth and stress response upon deviations from the homeostatic levels of HsfB1.

The Heat Stress Transcription Factor HsfA2 Serves as a Regulatory Amplifier of a Subset of Genes in the Heat Stress Response in Arabidopsis

Plant Molecular Biology, 2006

Within the Arabidopsis family of 21 heat stress transcription factors (Hsfs) HsfA2 is the strongest expressed member under heat stress (hs) conditions. Irrespective of the tissue, HsfA2 accumulates under heat stress similarly to other heat stress proteins (Hsps). A SALK T-DNA insertion line with a complete HsfA2-knockout was analyzed with respect to the changes in the transcriptome under heat stress conditions. Ascorbate peroxidase 2 (APX2) was identified as the most affected transcript in addition to several sHsps, individual members of the Hsp70 and Hsp100 family, as well as many transcripts of genes with yet unknown functions. For functional validation, the transcription activation potential of HsfA2 on GUS reporter constructs containing 1 kb upstream promoter sequences of selected target genes were analyzed using transient reporter assays in mesophyll protoplasts. By deletion analysis the promoter region of the strongest affected target gene APX2 was functionally mapped in detail to verify potential HsfA2 binding sites. By electrophoretic mobility shift assays we identified TATA-Box proximal clusters of heat stress elements (HSE) in the promoters of selected target genes as potential HsfA2 binding sites. The results presented here demonstrate that the expression of HsfA2 in Arabidopsis is strictly heat stress-dependent and this transcription factor represents a regulator of a subset of stress response genes in Arabidopsis.

In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato

Genes & Development, 2002

We generated transgenic tomato plants with altered expression of heat stress transcription factor HsfA1. Plants with 10-fold overexpression of HsfA1 (OE plants) were characterized by a single HsfA1 transgene cassette, whereas plants harboring a tandem inverted repeat of the cassette showed cosuppression (CS plants) by posttranscriptional silencing of the HsfA1 gene connected with formation of small interfering RNAs. Under normal growth conditions, major developmental parameters were similar for wild-type (WT), OE, and CS plants. However, CS plants and fruits were extremely sensitive to elevated temperatures, because heat stress-induced synthesis of chaperones and Hsfs was strongly reduced or lacking. Despite the complexity of the plant Hsf family with at least 17 members in tomato, HsfA1 has a unique function as master regulator for induced thermotolerance. Using transient reporter assays with mesophyll protoplasts from WT tomato, we demonstrated that plasmid-encoded HsfA1 and HsfA2 were well expressed. However, in CS protoplasts the cosuppression phenomenon was faithfully reproduced. Only transformation with HsfA2 expression plasmid led to normal expression of the transcription factor and reporter gene activation, whereas even high amounts of HsfA1 expression plasmids were silenced. Thermotolerance in CS protoplasts was restored by plasmid-borne HsfA2, resulting in expression of chaperones, thermoprotection of firefly luciferase, and assembly of heat stress granules. 3 Corresponding author. E-MAIL nover@cellbiology.uni-frankfurt.de; FAX 49-69-798-29286. Article and publication are at http://www.genesdev.org/cgi/

Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression

Molecular Genetics and Genomics, 2011

Arabidopsis DREB2A is a key transcription factor of heat-and drought-responsive gene expression, and DREB2A expression is induced by these stresses. We analyzed the DREB2A promoter and found a heat shock element that functions as a cis-acting element in the heat shock (HS)-responsive expression of DREB2A. Among the 21 Arabidopsis heat shock factors, we chose 4 HsfA1-type proteins as candidate transcriptional activators (HsfA1a, HsfA1b, HsfA1d, and HsfA1e) based on transactivation activity and expression patterns. We generated multiple mutants and found that the HS-responsive expression of DREB2A disappeared in hsfa1a/b/d triple and hsfa1a/b/d/e quadruple mutants. Moreover, HS-responsive gene expression, including that of molecular chaperones and transcription factors, was globally and drastically impaired in the hsfa1a/b/d triple mutant, which exhibited greatly reduced tolerance to HS stress. HsfA1 protein accumulation in the nucleus was negatively regulated by their interactions with HSP90, and other factors potentially strongly activate the HsfA1 proteins under HS stress. The hsfa1a/b/d/e quadruple mutant showed severe growth retardation, and many genes were downregulated in this mutant even under nonstress conditions. Our study indicates that HsfA1a, HsfA1b, and HsfA1d function as main positive regulators in HSresponsive gene expression and four HsfA1-type proteins are important in gene expression for normal plant growth.

Crosstalk between Hsp90 and Hsp70 Chaperones and Heat Stress Transcription Factors in Tomato

The Plant Cell, 2011

Heat stress transcription factors (Hsfs) regulate gene expression in response to environmental stress. The Hsf network in plants is controlled at the transcriptional level by cooperation of distinct Hsf members and by interaction with chaperones. We found two general mechanisms of Hsf regulation by chaperones while analyzing the three major Hsfs, A1, A2, and B1, in tomato (Solanum lycopersicum). First, Hsp70 and Hsp90 regulate Hsf function by direct interactions. Hsp70 represses the activity of HsfA1, including its DNA binding, and the coactivator function of HsfB1 in the complex with HsfA2, while the DNA binding activity of HsfB1 is stimulated by Hsp90. Second, Hsp90 affects the abundance of HsfA2 and HsfB1 by modulating hsfA2 transcript degradation involved in regulation of the timing of HsfA2 synthesis. By contrast, HsfB1 binding to Hsp90 and to DNA are prerequisites for targeting this Hsf for proteasomal degradation, which also depends on a sequence element in its carboxyl-termi...

A Heat-Inducible Transcription Factor, HsfA2, Is Required for Extension of Acquired Thermotolerance in Arabidopsis

Plant Physiology, 2006

The expression of heat shock proteins (Hsps) induced by nonlethal heat treatment confers acquired thermotolerance (AT) to organisms against subsequent challenges of otherwise lethal temperature. After the stress signal is removed, AT gradually decays, with decreased Hsps during recovery. AT of sufficient duration is critical for sessile organisms such as plants to survive repeated heat stress in their environment, but little is known regarding its regulation. To identify potential regulatory components, we took a reverse genetics approach by screening for Arabidopsis (Arabidopsis thaliana) T-DNA insertion mutants that show decreased thermotolerance after a long recovery (2 d) under nonstress conditions following an acclimation heat treatment. Among the tested mutants corresponding to 48 heat-induced genes, only the heat shock transcription factor HsfA2 knockout mutant showed an obvious phenotype. Following pretreatment at 37°C, the mutant line was more sensitive to severe heat stres...

A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis

Plant Journal, 2008

The dehydration-responsive element binding protein (DREB)/C-repeat binding factor (CBF) family are the classical transcriptional regulators involved in plant responses to drought, salt and cold stress. Recently it was demonstrated that DREB2A is induced by heat stress (hs) and is a regulator of the hs response of Arabidopsis. Here we provide molecular insights into the regulation and function of hs transcription factor HsfA3. Among the 21 members of the Arabidopsis Hsf family, HsfA3 is the only Hsf that is transcriptionally induced during hs by DREB2A, and HsfA3 in turn regulates the expression of Hsp-encoding genes. This transcription factor cascade was reconstructed in transient GUS reporter assays in mesophyll protoplasts by showing that DREB2A could activate the HsfA3 promoter, whereas HsfA3 in turn was shown to be a potent activator on the promoters of Hsp genes. Direct binding to the corresponding promoters was demonstrated by electrophoretic mobility shift assays, and the involvement of HsfA3 in the hs response in vivo was shown directly by observation of reduced thermotolerance in HsfA3 mutant lines. Altogether these data demonstrate that HsfA3 is transcriptionally controlled by DREB2A and important for the establishment of thermotolerance.

DNA-binding and repressor function are prerequisite for the turnover of the tomato heat stress transcription factor HsfB1

The Plant Journal, 2016

HsfB1 is a central regulator of heat stress (HS) response and functions dually as a transcriptional co-activator of HsfA1a and a general repressor in tomato. HsfB1 is efficiently synthesized during the onset of HS and rapidly removed in the course of attenuation during the recovery phase. Initial results point to a complex regime modulating HsfB1 abundance involving the molecular chaperone Hsp90. However, the molecular determinants affecting HsfB1 stability needed to be established. We provide experimental evidence that DNA-bound HsfB1 is efficiently targeted for degradation when active as a transcriptional repressor. Manipulation of the DNA-binding affinity by mutating the HsfB1 DNA-binding domain directly influences the stability of the transcription factor. During HS, HsfB1 is stabilized, probably due to co-activator complex formation with HsfA1a. The process of HsfB1 degradation involves nuclear localized Hsp90. The molecular determinants of HsfB1 turnover identified in here are so far seemingly unique. A mutational switch of the R/ KLFGV repressor motif's arginine and lysine implies that the abundance of other R/KLFGV type Hsfs, if not other transcription factors as well, might be modulated by a comparable mechanism. Thus, we propose a versatile mechanism for strict abundance control of the stress-induced transcription factor HsfB1 for the recovery phase, and this mechanism constitutes a form of transcription factor removal from promoters by degradation inside the nucleus.