Linkages among fluorescent dissolved organic matter, dissolved amino acids and lignin-derived phenols in a river-influenced ocean margin (original) (raw)

Fluorescence-based proxies for lignin in freshwater dissolved organic matter

Journal of Geophysical Research, 2009

Abstract[1] Lignin phenols have proven to be powerful biomarkers in environmental studies; however, the complexity of lignin analysis limits the number of samples and thus spatial and temporal resolution in any given study. In contrast, spectrophotometric characterization of dissolved organic matter (DOM) is rapid, noninvasive, relatively inexpensive, requires small sample volumes, and can even be measured in situ to capture fine-scale temporal and spatial detail of DOM cycling. Here we present a series of cross-validated Partial Least Squares models that use fluorescence properties of DOM to explain up to 91% of lignin compositional and concentration variability in samples collected seasonally over 2 years in the Sacramento River/San Joaquin River Delta in California, United States. These models were subsequently used to predict lignin composition and concentration from fluorescence measurements collected during a diurnal study in the San Joaquin River. While modeled lignin composition remained largely unchanged over the diurnal cycle, changes in modeled lignin concentrations were much greater than expected and indicate that the sensitivity of fluorescence-based proxies for lignin may prove invaluable as a tool for selecting the most informative samples for detailed lignin characterization. With adequate calibration, similar models could be used to significantly expand our ability to study sources and processing of DOM in complex surface water systems.

Predicting Dissolved Lignin Phenol Concentrations in the Coastal Ocean from Chromophoric Dissolved Organic Matter (CDOM) Absorption Coefficients

Dissolved lignin is a well-established biomarker of terrigenous dissolved organic matter (DOM) in the ocean, and a chromophoric component of DOM. Although evidence suggests there is a strong linkage between lignin concentrations and chromophoric dissolved organic matter (CDOM) absorption coefficients in coastal waters, the characteristics of this linkage and the existence of a relationship that is applicable across coastal oceans remain unclear. Here, 421 paired measurements of dissolved lignin concentrations (sum of nine lignin phenols) and CDOM absorption coefficients [a g (λ)] were used to examine their relationship along the river-ocean continuum (0–37 salinity) and across contrasting coastal oceans (subtropical , temperate, high-latitude). Overall, lignin concentrations spanned four orders of magnitude and revealed a strong, non-linear relationship with a g (λ). The characteristics of the relationship (shape, wavelength dependency, lignin-composition dependency) and evidence from degradation indicators were all consistent with lignin being an important driver of CDOM variability in coastal oceans, and suggested physical mixing and long-term photodegradation were important in shaping the relationship. These observations were used to develop two simple empirical models for estimating lignin concentrations from a g (λ) with a ±20% error relative to measured values. The models are expected to be applicable in most coastal oceans influenced by terrigenous inputs.

Optical Proxies for Terrestrial Dissolved Organic Matter in Estuaries and Coastal Waters

Dissolved organic matter (DOM) absorbance and fluorescence were used as optical proxies to track terrestrial DOM fluxes through estuaries and coastal waters by comparing models developed for several coastal ecosystems. Key to using these optical properties is validating and calibrating them with chemical measurements, such as lignin-derived phenols—a proxy to quantify terrestrial DOM. Utilizing parallel factor analysis (PARAFAC), and comparing models statistically using the OpenFluor database (http://www.openfluor.org) we have found common, ubiquitous fluorescing components which correlate most strongly with lignin phenol concentrations in several estuarine and coastal environments. Optical proxies for lignin were computed for the following regions: Mackenzie River Estuary, Atchafalaya River Estuary (ARE), Charleston Harbor, Chesapeake Bay, and Neuse River Estuary (NRE) (all in North America). The slope of linear regression models relating CDOM absorption at 350 nm (a 350) to DOC and to lignin, varied 5–10-fold among systems. Where seasonal observations were available from a region, there were distinct seasonal differences in equation parameters for these optical proxies. The variability appeared to be due primarily to river flow into these estuaries and secondarily to biogeochemical cycling of DOM within them. Despite the variability, overall models using single linear regression were developed that related dissolved organic carbon (DOC) concentration to CDOM (DOC 2 = 40 ± 2 × a + ± 350 138 16; R = 0.77; N = 130) and lignin (8) to CDOM (= 2.03 ± 0.07 × a .47 2 − 0 ± = 8 350 0.59; R 0.87; N = 130). This wide variability suggested that local or regional optical models should be developed for predicting terrestrial DOM flux into coastal oceans and taken into account when upscaling to remote sensing observations and calibrations.